| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycpmco2.c |  |-  M = ( toCyc ` D ) | 
						
							| 2 |  | cycpmco2.s |  |-  S = ( SymGrp ` D ) | 
						
							| 3 |  | cycpmco2.d |  |-  ( ph -> D e. V ) | 
						
							| 4 |  | cycpmco2.w |  |-  ( ph -> W e. dom M ) | 
						
							| 5 |  | cycpmco2.i |  |-  ( ph -> I e. ( D \ ran W ) ) | 
						
							| 6 |  | cycpmco2.j |  |-  ( ph -> J e. ran W ) | 
						
							| 7 |  | cycpmco2.e |  |-  E = ( ( `' W ` J ) + 1 ) | 
						
							| 8 |  | cycpmco2.1 |  |-  U = ( W splice <. E , E , <" I "> >. ) | 
						
							| 9 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 10 | 1 2 9 | tocycf |  |-  ( D e. V -> M : { w e. Word D | w : dom w -1-1-> D } --> ( Base ` S ) ) | 
						
							| 11 | 3 10 | syl |  |-  ( ph -> M : { w e. Word D | w : dom w -1-1-> D } --> ( Base ` S ) ) | 
						
							| 12 | 11 | fdmd |  |-  ( ph -> dom M = { w e. Word D | w : dom w -1-1-> D } ) | 
						
							| 13 | 4 12 | eleqtrd |  |-  ( ph -> W e. { w e. Word D | w : dom w -1-1-> D } ) | 
						
							| 14 | 11 13 | ffvelcdmd |  |-  ( ph -> ( M ` W ) e. ( Base ` S ) ) | 
						
							| 15 | 2 9 | symgbasf |  |-  ( ( M ` W ) e. ( Base ` S ) -> ( M ` W ) : D --> D ) | 
						
							| 16 | 14 15 | syl |  |-  ( ph -> ( M ` W ) : D --> D ) | 
						
							| 17 | 16 | ffnd |  |-  ( ph -> ( M ` W ) Fn D ) | 
						
							| 18 | 5 | eldifad |  |-  ( ph -> I e. D ) | 
						
							| 19 |  | ssrab2 |  |-  { w e. Word D | w : dom w -1-1-> D } C_ Word D | 
						
							| 20 | 19 13 | sselid |  |-  ( ph -> W e. Word D ) | 
						
							| 21 |  | id |  |-  ( w = W -> w = W ) | 
						
							| 22 |  | dmeq |  |-  ( w = W -> dom w = dom W ) | 
						
							| 23 |  | eqidd |  |-  ( w = W -> D = D ) | 
						
							| 24 | 21 22 23 | f1eq123d |  |-  ( w = W -> ( w : dom w -1-1-> D <-> W : dom W -1-1-> D ) ) | 
						
							| 25 | 24 | elrab3 |  |-  ( W e. Word D -> ( W e. { w e. Word D | w : dom w -1-1-> D } <-> W : dom W -1-1-> D ) ) | 
						
							| 26 | 25 | biimpa |  |-  ( ( W e. Word D /\ W e. { w e. Word D | w : dom w -1-1-> D } ) -> W : dom W -1-1-> D ) | 
						
							| 27 | 20 13 26 | syl2anc |  |-  ( ph -> W : dom W -1-1-> D ) | 
						
							| 28 |  | f1f |  |-  ( W : dom W -1-1-> D -> W : dom W --> D ) | 
						
							| 29 | 27 28 | syl |  |-  ( ph -> W : dom W --> D ) | 
						
							| 30 | 29 | frnd |  |-  ( ph -> ran W C_ D ) | 
						
							| 31 | 30 6 | sseldd |  |-  ( ph -> J e. D ) | 
						
							| 32 | 5 | eldifbd |  |-  ( ph -> -. I e. ran W ) | 
						
							| 33 |  | nelne2 |  |-  ( ( J e. ran W /\ -. I e. ran W ) -> J =/= I ) | 
						
							| 34 | 6 32 33 | syl2anc |  |-  ( ph -> J =/= I ) | 
						
							| 35 | 34 | necomd |  |-  ( ph -> I =/= J ) | 
						
							| 36 | 1 3 18 31 35 2 | cycpm2cl |  |-  ( ph -> ( M ` <" I J "> ) e. ( Base ` S ) ) | 
						
							| 37 | 2 9 | symgbasf |  |-  ( ( M ` <" I J "> ) e. ( Base ` S ) -> ( M ` <" I J "> ) : D --> D ) | 
						
							| 38 | 36 37 | syl |  |-  ( ph -> ( M ` <" I J "> ) : D --> D ) | 
						
							| 39 | 38 | ffnd |  |-  ( ph -> ( M ` <" I J "> ) Fn D ) | 
						
							| 40 | 38 | frnd |  |-  ( ph -> ran ( M ` <" I J "> ) C_ D ) | 
						
							| 41 |  | fnco |  |-  ( ( ( M ` W ) Fn D /\ ( M ` <" I J "> ) Fn D /\ ran ( M ` <" I J "> ) C_ D ) -> ( ( M ` W ) o. ( M ` <" I J "> ) ) Fn D ) | 
						
							| 42 | 17 39 40 41 | syl3anc |  |-  ( ph -> ( ( M ` W ) o. ( M ` <" I J "> ) ) Fn D ) | 
						
							| 43 | 18 | s1cld |  |-  ( ph -> <" I "> e. Word D ) | 
						
							| 44 |  | splcl |  |-  ( ( W e. Word D /\ <" I "> e. Word D ) -> ( W splice <. E , E , <" I "> >. ) e. Word D ) | 
						
							| 45 | 20 43 44 | syl2anc |  |-  ( ph -> ( W splice <. E , E , <" I "> >. ) e. Word D ) | 
						
							| 46 | 8 45 | eqeltrid |  |-  ( ph -> U e. Word D ) | 
						
							| 47 | 1 2 3 4 5 6 7 8 | cycpmco2f1 |  |-  ( ph -> U : dom U -1-1-> D ) | 
						
							| 48 | 1 3 46 47 2 | cycpmcl |  |-  ( ph -> ( M ` U ) e. ( Base ` S ) ) | 
						
							| 49 | 2 9 | symgbasf |  |-  ( ( M ` U ) e. ( Base ` S ) -> ( M ` U ) : D --> D ) | 
						
							| 50 | 48 49 | syl |  |-  ( ph -> ( M ` U ) : D --> D ) | 
						
							| 51 | 50 | ffnd |  |-  ( ph -> ( M ` U ) Fn D ) | 
						
							| 52 |  | fvco3 |  |-  ( ( ( M ` <" I J "> ) : D --> D /\ i e. D ) -> ( ( ( M ` W ) o. ( M ` <" I J "> ) ) ` i ) = ( ( M ` W ) ` ( ( M ` <" I J "> ) ` i ) ) ) | 
						
							| 53 | 38 52 | sylan |  |-  ( ( ph /\ i e. D ) -> ( ( ( M ` W ) o. ( M ` <" I J "> ) ) ` i ) = ( ( M ` W ) ` ( ( M ` <" I J "> ) ` i ) ) ) | 
						
							| 54 | 1 3 18 31 35 2 | cyc2fv2 |  |-  ( ph -> ( ( M ` <" I J "> ) ` J ) = I ) | 
						
							| 55 | 54 | fveq2d |  |-  ( ph -> ( ( M ` W ) ` ( ( M ` <" I J "> ) ` J ) ) = ( ( M ` W ) ` I ) ) | 
						
							| 56 | 1 2 3 4 5 6 7 8 | cycpmco2lem2 |  |-  ( ph -> ( U ` E ) = I ) | 
						
							| 57 |  | f1cnv |  |-  ( W : dom W -1-1-> D -> `' W : ran W -1-1-onto-> dom W ) | 
						
							| 58 |  | f1of |  |-  ( `' W : ran W -1-1-onto-> dom W -> `' W : ran W --> dom W ) | 
						
							| 59 | 27 57 58 | 3syl |  |-  ( ph -> `' W : ran W --> dom W ) | 
						
							| 60 | 59 6 | ffvelcdmd |  |-  ( ph -> ( `' W ` J ) e. dom W ) | 
						
							| 61 |  | wrddm |  |-  ( W e. Word D -> dom W = ( 0 ..^ ( # ` W ) ) ) | 
						
							| 62 | 20 61 | syl |  |-  ( ph -> dom W = ( 0 ..^ ( # ` W ) ) ) | 
						
							| 63 | 60 62 | eleqtrd |  |-  ( ph -> ( `' W ` J ) e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 64 |  | lencl |  |-  ( W e. Word D -> ( # ` W ) e. NN0 ) | 
						
							| 65 | 20 64 | syl |  |-  ( ph -> ( # ` W ) e. NN0 ) | 
						
							| 66 | 65 | nn0cnd |  |-  ( ph -> ( # ` W ) e. CC ) | 
						
							| 67 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 68 |  | ovexd |  |-  ( ph -> ( ( `' W ` J ) + 1 ) e. _V ) | 
						
							| 69 | 7 68 | eqeltrid |  |-  ( ph -> E e. _V ) | 
						
							| 70 |  | splval |  |-  ( ( W e. dom M /\ ( E e. _V /\ E e. _V /\ <" I "> e. Word D ) ) -> ( W splice <. E , E , <" I "> >. ) = ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) | 
						
							| 71 | 4 69 69 43 70 | syl13anc |  |-  ( ph -> ( W splice <. E , E , <" I "> >. ) = ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) | 
						
							| 72 | 8 71 | eqtrid |  |-  ( ph -> U = ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) | 
						
							| 73 | 72 | fveq2d |  |-  ( ph -> ( # ` U ) = ( # ` ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) ) | 
						
							| 74 |  | pfxcl |  |-  ( W e. Word D -> ( W prefix E ) e. Word D ) | 
						
							| 75 | 20 74 | syl |  |-  ( ph -> ( W prefix E ) e. Word D ) | 
						
							| 76 |  | ccatcl |  |-  ( ( ( W prefix E ) e. Word D /\ <" I "> e. Word D ) -> ( ( W prefix E ) ++ <" I "> ) e. Word D ) | 
						
							| 77 | 75 43 76 | syl2anc |  |-  ( ph -> ( ( W prefix E ) ++ <" I "> ) e. Word D ) | 
						
							| 78 |  | swrdcl |  |-  ( W e. Word D -> ( W substr <. E , ( # ` W ) >. ) e. Word D ) | 
						
							| 79 | 20 78 | syl |  |-  ( ph -> ( W substr <. E , ( # ` W ) >. ) e. Word D ) | 
						
							| 80 |  | ccatlen |  |-  ( ( ( ( W prefix E ) ++ <" I "> ) e. Word D /\ ( W substr <. E , ( # ` W ) >. ) e. Word D ) -> ( # ` ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) = ( ( # ` ( ( W prefix E ) ++ <" I "> ) ) + ( # ` ( W substr <. E , ( # ` W ) >. ) ) ) ) | 
						
							| 81 | 77 79 80 | syl2anc |  |-  ( ph -> ( # ` ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) = ( ( # ` ( ( W prefix E ) ++ <" I "> ) ) + ( # ` ( W substr <. E , ( # ` W ) >. ) ) ) ) | 
						
							| 82 |  | ccatws1len |  |-  ( ( W prefix E ) e. Word D -> ( # ` ( ( W prefix E ) ++ <" I "> ) ) = ( ( # ` ( W prefix E ) ) + 1 ) ) | 
						
							| 83 | 20 74 82 | 3syl |  |-  ( ph -> ( # ` ( ( W prefix E ) ++ <" I "> ) ) = ( ( # ` ( W prefix E ) ) + 1 ) ) | 
						
							| 84 |  | fzofzp1 |  |-  ( ( `' W ` J ) e. ( 0 ..^ ( # ` W ) ) -> ( ( `' W ` J ) + 1 ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 85 | 63 84 | syl |  |-  ( ph -> ( ( `' W ` J ) + 1 ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 86 | 7 85 | eqeltrid |  |-  ( ph -> E e. ( 0 ... ( # ` W ) ) ) | 
						
							| 87 |  | pfxlen |  |-  ( ( W e. Word D /\ E e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( W prefix E ) ) = E ) | 
						
							| 88 | 20 86 87 | syl2anc |  |-  ( ph -> ( # ` ( W prefix E ) ) = E ) | 
						
							| 89 | 88 | oveq1d |  |-  ( ph -> ( ( # ` ( W prefix E ) ) + 1 ) = ( E + 1 ) ) | 
						
							| 90 | 83 89 | eqtrd |  |-  ( ph -> ( # ` ( ( W prefix E ) ++ <" I "> ) ) = ( E + 1 ) ) | 
						
							| 91 |  | nn0fz0 |  |-  ( ( # ` W ) e. NN0 <-> ( # ` W ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 92 | 65 91 | sylib |  |-  ( ph -> ( # ` W ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 93 |  | swrdlen |  |-  ( ( W e. Word D /\ E e. ( 0 ... ( # ` W ) ) /\ ( # ` W ) e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( W substr <. E , ( # ` W ) >. ) ) = ( ( # ` W ) - E ) ) | 
						
							| 94 | 20 86 92 93 | syl3anc |  |-  ( ph -> ( # ` ( W substr <. E , ( # ` W ) >. ) ) = ( ( # ` W ) - E ) ) | 
						
							| 95 | 90 94 | oveq12d |  |-  ( ph -> ( ( # ` ( ( W prefix E ) ++ <" I "> ) ) + ( # ` ( W substr <. E , ( # ` W ) >. ) ) ) = ( ( E + 1 ) + ( ( # ` W ) - E ) ) ) | 
						
							| 96 | 73 81 95 | 3eqtrd |  |-  ( ph -> ( # ` U ) = ( ( E + 1 ) + ( ( # ` W ) - E ) ) ) | 
						
							| 97 |  | fz0ssnn0 |  |-  ( 0 ... ( # ` W ) ) C_ NN0 | 
						
							| 98 | 97 86 | sselid |  |-  ( ph -> E e. NN0 ) | 
						
							| 99 | 98 | nn0zd |  |-  ( ph -> E e. ZZ ) | 
						
							| 100 | 99 | peano2zd |  |-  ( ph -> ( E + 1 ) e. ZZ ) | 
						
							| 101 | 100 | zcnd |  |-  ( ph -> ( E + 1 ) e. CC ) | 
						
							| 102 | 98 | nn0cnd |  |-  ( ph -> E e. CC ) | 
						
							| 103 | 101 66 102 | addsubassd |  |-  ( ph -> ( ( ( E + 1 ) + ( # ` W ) ) - E ) = ( ( E + 1 ) + ( ( # ` W ) - E ) ) ) | 
						
							| 104 | 102 67 66 | addassd |  |-  ( ph -> ( ( E + 1 ) + ( # ` W ) ) = ( E + ( 1 + ( # ` W ) ) ) ) | 
						
							| 105 | 104 | oveq1d |  |-  ( ph -> ( ( ( E + 1 ) + ( # ` W ) ) - E ) = ( ( E + ( 1 + ( # ` W ) ) ) - E ) ) | 
						
							| 106 | 96 103 105 | 3eqtr2d |  |-  ( ph -> ( # ` U ) = ( ( E + ( 1 + ( # ` W ) ) ) - E ) ) | 
						
							| 107 | 67 66 | addcld |  |-  ( ph -> ( 1 + ( # ` W ) ) e. CC ) | 
						
							| 108 | 102 107 | pncan2d |  |-  ( ph -> ( ( E + ( 1 + ( # ` W ) ) ) - E ) = ( 1 + ( # ` W ) ) ) | 
						
							| 109 | 67 66 | addcomd |  |-  ( ph -> ( 1 + ( # ` W ) ) = ( ( # ` W ) + 1 ) ) | 
						
							| 110 | 106 108 109 | 3eqtrd |  |-  ( ph -> ( # ` U ) = ( ( # ` W ) + 1 ) ) | 
						
							| 111 | 66 67 110 | mvrraddd |  |-  ( ph -> ( ( # ` U ) - 1 ) = ( # ` W ) ) | 
						
							| 112 | 111 | oveq2d |  |-  ( ph -> ( 0 ..^ ( ( # ` U ) - 1 ) ) = ( 0 ..^ ( # ` W ) ) ) | 
						
							| 113 | 63 112 | eleqtrrd |  |-  ( ph -> ( `' W ` J ) e. ( 0 ..^ ( ( # ` U ) - 1 ) ) ) | 
						
							| 114 | 1 3 46 47 113 | cycpmfv1 |  |-  ( ph -> ( ( M ` U ) ` ( U ` ( `' W ` J ) ) ) = ( U ` ( ( `' W ` J ) + 1 ) ) ) | 
						
							| 115 | 7 | fveq2i |  |-  ( U ` E ) = ( U ` ( ( `' W ` J ) + 1 ) ) | 
						
							| 116 | 114 115 | eqtr4di |  |-  ( ph -> ( ( M ` U ) ` ( U ` ( `' W ` J ) ) ) = ( U ` E ) ) | 
						
							| 117 | 1 3 20 27 18 32 | cycpmfv3 |  |-  ( ph -> ( ( M ` W ) ` I ) = I ) | 
						
							| 118 | 56 116 117 | 3eqtr4d |  |-  ( ph -> ( ( M ` U ) ` ( U ` ( `' W ` J ) ) ) = ( ( M ` W ) ` I ) ) | 
						
							| 119 | 72 | fveq1d |  |-  ( ph -> ( U ` ( `' W ` J ) ) = ( ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ` ( `' W ` J ) ) ) | 
						
							| 120 |  | fzossfzop1 |  |-  ( E e. NN0 -> ( 0 ..^ E ) C_ ( 0 ..^ ( E + 1 ) ) ) | 
						
							| 121 | 98 120 | syl |  |-  ( ph -> ( 0 ..^ E ) C_ ( 0 ..^ ( E + 1 ) ) ) | 
						
							| 122 |  | elfzonn0 |  |-  ( ( `' W ` J ) e. ( 0 ..^ ( # ` W ) ) -> ( `' W ` J ) e. NN0 ) | 
						
							| 123 |  | fzonn0p1 |  |-  ( ( `' W ` J ) e. NN0 -> ( `' W ` J ) e. ( 0 ..^ ( ( `' W ` J ) + 1 ) ) ) | 
						
							| 124 | 63 122 123 | 3syl |  |-  ( ph -> ( `' W ` J ) e. ( 0 ..^ ( ( `' W ` J ) + 1 ) ) ) | 
						
							| 125 | 7 | oveq2i |  |-  ( 0 ..^ E ) = ( 0 ..^ ( ( `' W ` J ) + 1 ) ) | 
						
							| 126 | 124 125 | eleqtrrdi |  |-  ( ph -> ( `' W ` J ) e. ( 0 ..^ E ) ) | 
						
							| 127 | 121 126 | sseldd |  |-  ( ph -> ( `' W ` J ) e. ( 0 ..^ ( E + 1 ) ) ) | 
						
							| 128 | 90 | oveq2d |  |-  ( ph -> ( 0 ..^ ( # ` ( ( W prefix E ) ++ <" I "> ) ) ) = ( 0 ..^ ( E + 1 ) ) ) | 
						
							| 129 | 127 128 | eleqtrrd |  |-  ( ph -> ( `' W ` J ) e. ( 0 ..^ ( # ` ( ( W prefix E ) ++ <" I "> ) ) ) ) | 
						
							| 130 |  | ccatval1 |  |-  ( ( ( ( W prefix E ) ++ <" I "> ) e. Word D /\ ( W substr <. E , ( # ` W ) >. ) e. Word D /\ ( `' W ` J ) e. ( 0 ..^ ( # ` ( ( W prefix E ) ++ <" I "> ) ) ) ) -> ( ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ` ( `' W ` J ) ) = ( ( ( W prefix E ) ++ <" I "> ) ` ( `' W ` J ) ) ) | 
						
							| 131 | 77 79 129 130 | syl3anc |  |-  ( ph -> ( ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ` ( `' W ` J ) ) = ( ( ( W prefix E ) ++ <" I "> ) ` ( `' W ` J ) ) ) | 
						
							| 132 | 88 | oveq2d |  |-  ( ph -> ( 0 ..^ ( # ` ( W prefix E ) ) ) = ( 0 ..^ E ) ) | 
						
							| 133 | 126 132 | eleqtrrd |  |-  ( ph -> ( `' W ` J ) e. ( 0 ..^ ( # ` ( W prefix E ) ) ) ) | 
						
							| 134 |  | ccatval1 |  |-  ( ( ( W prefix E ) e. Word D /\ <" I "> e. Word D /\ ( `' W ` J ) e. ( 0 ..^ ( # ` ( W prefix E ) ) ) ) -> ( ( ( W prefix E ) ++ <" I "> ) ` ( `' W ` J ) ) = ( ( W prefix E ) ` ( `' W ` J ) ) ) | 
						
							| 135 | 75 43 133 134 | syl3anc |  |-  ( ph -> ( ( ( W prefix E ) ++ <" I "> ) ` ( `' W ` J ) ) = ( ( W prefix E ) ` ( `' W ` J ) ) ) | 
						
							| 136 | 119 131 135 | 3eqtrd |  |-  ( ph -> ( U ` ( `' W ` J ) ) = ( ( W prefix E ) ` ( `' W ` J ) ) ) | 
						
							| 137 |  | pfxfv |  |-  ( ( W e. Word D /\ E e. ( 0 ... ( # ` W ) ) /\ ( `' W ` J ) e. ( 0 ..^ E ) ) -> ( ( W prefix E ) ` ( `' W ` J ) ) = ( W ` ( `' W ` J ) ) ) | 
						
							| 138 | 20 86 126 137 | syl3anc |  |-  ( ph -> ( ( W prefix E ) ` ( `' W ` J ) ) = ( W ` ( `' W ` J ) ) ) | 
						
							| 139 |  | f1f1orn |  |-  ( W : dom W -1-1-> D -> W : dom W -1-1-onto-> ran W ) | 
						
							| 140 | 27 139 | syl |  |-  ( ph -> W : dom W -1-1-onto-> ran W ) | 
						
							| 141 |  | f1ocnvfv2 |  |-  ( ( W : dom W -1-1-onto-> ran W /\ J e. ran W ) -> ( W ` ( `' W ` J ) ) = J ) | 
						
							| 142 | 140 6 141 | syl2anc |  |-  ( ph -> ( W ` ( `' W ` J ) ) = J ) | 
						
							| 143 | 136 138 142 | 3eqtrd |  |-  ( ph -> ( U ` ( `' W ` J ) ) = J ) | 
						
							| 144 | 143 | fveq2d |  |-  ( ph -> ( ( M ` U ) ` ( U ` ( `' W ` J ) ) ) = ( ( M ` U ) ` J ) ) | 
						
							| 145 | 55 118 144 | 3eqtr2d |  |-  ( ph -> ( ( M ` W ) ` ( ( M ` <" I J "> ) ` J ) ) = ( ( M ` U ) ` J ) ) | 
						
							| 146 | 145 | ad2antrr |  |-  ( ( ( ph /\ i e. ran W ) /\ i = J ) -> ( ( M ` W ) ` ( ( M ` <" I J "> ) ` J ) ) = ( ( M ` U ) ` J ) ) | 
						
							| 147 |  | simpr |  |-  ( ( ( ph /\ i e. ran W ) /\ i = J ) -> i = J ) | 
						
							| 148 | 147 | fveq2d |  |-  ( ( ( ph /\ i e. ran W ) /\ i = J ) -> ( ( M ` <" I J "> ) ` i ) = ( ( M ` <" I J "> ) ` J ) ) | 
						
							| 149 | 148 | fveq2d |  |-  ( ( ( ph /\ i e. ran W ) /\ i = J ) -> ( ( M ` W ) ` ( ( M ` <" I J "> ) ` i ) ) = ( ( M ` W ) ` ( ( M ` <" I J "> ) ` J ) ) ) | 
						
							| 150 | 147 | fveq2d |  |-  ( ( ( ph /\ i e. ran W ) /\ i = J ) -> ( ( M ` U ) ` i ) = ( ( M ` U ) ` J ) ) | 
						
							| 151 | 146 149 150 | 3eqtr4d |  |-  ( ( ( ph /\ i e. ran W ) /\ i = J ) -> ( ( M ` W ) ` ( ( M ` <" I J "> ) ` i ) ) = ( ( M ` U ) ` i ) ) | 
						
							| 152 | 3 | ad2antrr |  |-  ( ( ( ph /\ i e. ran W ) /\ i =/= J ) -> D e. V ) | 
						
							| 153 | 18 31 | s2cld |  |-  ( ph -> <" I J "> e. Word D ) | 
						
							| 154 | 153 | ad2antrr |  |-  ( ( ( ph /\ i e. ran W ) /\ i =/= J ) -> <" I J "> e. Word D ) | 
						
							| 155 | 18 31 35 | s2f1 |  |-  ( ph -> <" I J "> : dom <" I J "> -1-1-> D ) | 
						
							| 156 | 155 | ad2antrr |  |-  ( ( ( ph /\ i e. ran W ) /\ i =/= J ) -> <" I J "> : dom <" I J "> -1-1-> D ) | 
						
							| 157 | 30 | sselda |  |-  ( ( ph /\ i e. ran W ) -> i e. D ) | 
						
							| 158 | 157 | adantr |  |-  ( ( ( ph /\ i e. ran W ) /\ i =/= J ) -> i e. D ) | 
						
							| 159 |  | simpr |  |-  ( ( ph /\ i e. ran W ) -> i e. ran W ) | 
						
							| 160 | 32 | adantr |  |-  ( ( ph /\ i e. ran W ) -> -. I e. ran W ) | 
						
							| 161 |  | nelne2 |  |-  ( ( i e. ran W /\ -. I e. ran W ) -> i =/= I ) | 
						
							| 162 | 159 160 161 | syl2anc |  |-  ( ( ph /\ i e. ran W ) -> i =/= I ) | 
						
							| 163 | 162 | adantr |  |-  ( ( ( ph /\ i e. ran W ) /\ i =/= J ) -> i =/= I ) | 
						
							| 164 |  | simpr |  |-  ( ( ( ph /\ i e. ran W ) /\ i =/= J ) -> i =/= J ) | 
						
							| 165 | 163 164 | nelprd |  |-  ( ( ( ph /\ i e. ran W ) /\ i =/= J ) -> -. i e. { I , J } ) | 
						
							| 166 | 18 31 | s2rn |  |-  ( ph -> ran <" I J "> = { I , J } ) | 
						
							| 167 | 166 | eleq2d |  |-  ( ph -> ( i e. ran <" I J "> <-> i e. { I , J } ) ) | 
						
							| 168 | 167 | notbid |  |-  ( ph -> ( -. i e. ran <" I J "> <-> -. i e. { I , J } ) ) | 
						
							| 169 | 168 | ad2antrr |  |-  ( ( ( ph /\ i e. ran W ) /\ i =/= J ) -> ( -. i e. ran <" I J "> <-> -. i e. { I , J } ) ) | 
						
							| 170 | 165 169 | mpbird |  |-  ( ( ( ph /\ i e. ran W ) /\ i =/= J ) -> -. i e. ran <" I J "> ) | 
						
							| 171 | 1 152 154 156 158 170 | cycpmfv3 |  |-  ( ( ( ph /\ i e. ran W ) /\ i =/= J ) -> ( ( M ` <" I J "> ) ` i ) = i ) | 
						
							| 172 | 171 | fveq2d |  |-  ( ( ( ph /\ i e. ran W ) /\ i =/= J ) -> ( ( M ` W ) ` ( ( M ` <" I J "> ) ` i ) ) = ( ( M ` W ) ` i ) ) | 
						
							| 173 | 3 | ad3antrrr |  |-  ( ( ( ( ph /\ i e. ran W ) /\ i =/= J ) /\ ( `' U ` i ) e. ( 0 ..^ E ) ) -> D e. V ) | 
						
							| 174 | 4 | ad3antrrr |  |-  ( ( ( ( ph /\ i e. ran W ) /\ i =/= J ) /\ ( `' U ` i ) e. ( 0 ..^ E ) ) -> W e. dom M ) | 
						
							| 175 | 5 | ad3antrrr |  |-  ( ( ( ( ph /\ i e. ran W ) /\ i =/= J ) /\ ( `' U ` i ) e. ( 0 ..^ E ) ) -> I e. ( D \ ran W ) ) | 
						
							| 176 | 6 | ad3antrrr |  |-  ( ( ( ( ph /\ i e. ran W ) /\ i =/= J ) /\ ( `' U ` i ) e. ( 0 ..^ E ) ) -> J e. ran W ) | 
						
							| 177 |  | simpllr |  |-  ( ( ( ( ph /\ i e. ran W ) /\ i =/= J ) /\ ( `' U ` i ) e. ( 0 ..^ E ) ) -> i e. ran W ) | 
						
							| 178 |  | simplr |  |-  ( ( ( ( ph /\ i e. ran W ) /\ i =/= J ) /\ ( `' U ` i ) e. ( 0 ..^ E ) ) -> i =/= J ) | 
						
							| 179 |  | simpr |  |-  ( ( ( ( ph /\ i e. ran W ) /\ i =/= J ) /\ ( `' U ` i ) e. ( 0 ..^ E ) ) -> ( `' U ` i ) e. ( 0 ..^ E ) ) | 
						
							| 180 | 1 2 173 174 175 176 7 8 177 178 179 | cycpmco2lem7 |  |-  ( ( ( ( ph /\ i e. ran W ) /\ i =/= J ) /\ ( `' U ` i ) e. ( 0 ..^ E ) ) -> ( ( M ` U ) ` i ) = ( ( M ` W ) ` i ) ) | 
						
							| 181 | 3 | ad3antrrr |  |-  ( ( ( ( ph /\ i e. ran W ) /\ i =/= J ) /\ ( `' U ` i ) e. ( E ..^ ( ( # ` U ) - 1 ) ) ) -> D e. V ) | 
						
							| 182 | 4 | ad3antrrr |  |-  ( ( ( ( ph /\ i e. ran W ) /\ i =/= J ) /\ ( `' U ` i ) e. ( E ..^ ( ( # ` U ) - 1 ) ) ) -> W e. dom M ) | 
						
							| 183 | 5 | ad3antrrr |  |-  ( ( ( ( ph /\ i e. ran W ) /\ i =/= J ) /\ ( `' U ` i ) e. ( E ..^ ( ( # ` U ) - 1 ) ) ) -> I e. ( D \ ran W ) ) | 
						
							| 184 | 6 | ad3antrrr |  |-  ( ( ( ( ph /\ i e. ran W ) /\ i =/= J ) /\ ( `' U ` i ) e. ( E ..^ ( ( # ` U ) - 1 ) ) ) -> J e. ran W ) | 
						
							| 185 |  | simpllr |  |-  ( ( ( ( ph /\ i e. ran W ) /\ i =/= J ) /\ ( `' U ` i ) e. ( E ..^ ( ( # ` U ) - 1 ) ) ) -> i e. ran W ) | 
						
							| 186 | 162 | ad2antrr |  |-  ( ( ( ( ph /\ i e. ran W ) /\ i =/= J ) /\ ( `' U ` i ) e. ( E ..^ ( ( # ` U ) - 1 ) ) ) -> i =/= I ) | 
						
							| 187 |  | simpr |  |-  ( ( ( ( ph /\ i e. ran W ) /\ i =/= J ) /\ ( `' U ` i ) e. ( E ..^ ( ( # ` U ) - 1 ) ) ) -> ( `' U ` i ) e. ( E ..^ ( ( # ` U ) - 1 ) ) ) | 
						
							| 188 | 1 2 181 182 183 184 7 8 185 186 187 | cycpmco2lem6 |  |-  ( ( ( ( ph /\ i e. ran W ) /\ i =/= J ) /\ ( `' U ` i ) e. ( E ..^ ( ( # ` U ) - 1 ) ) ) -> ( ( M ` U ) ` i ) = ( ( M ` W ) ` i ) ) | 
						
							| 189 | 3 | ad3antrrr |  |-  ( ( ( ( ph /\ i e. ran W ) /\ i =/= J ) /\ ( `' U ` i ) = ( ( # ` U ) - 1 ) ) -> D e. V ) | 
						
							| 190 | 4 | ad3antrrr |  |-  ( ( ( ( ph /\ i e. ran W ) /\ i =/= J ) /\ ( `' U ` i ) = ( ( # ` U ) - 1 ) ) -> W e. dom M ) | 
						
							| 191 | 5 | ad3antrrr |  |-  ( ( ( ( ph /\ i e. ran W ) /\ i =/= J ) /\ ( `' U ` i ) = ( ( # ` U ) - 1 ) ) -> I e. ( D \ ran W ) ) | 
						
							| 192 | 6 | ad3antrrr |  |-  ( ( ( ( ph /\ i e. ran W ) /\ i =/= J ) /\ ( `' U ` i ) = ( ( # ` U ) - 1 ) ) -> J e. ran W ) | 
						
							| 193 |  | simpllr |  |-  ( ( ( ( ph /\ i e. ran W ) /\ i =/= J ) /\ ( `' U ` i ) = ( ( # ` U ) - 1 ) ) -> i e. ran W ) | 
						
							| 194 |  | simpr |  |-  ( ( ( ( ph /\ i e. ran W ) /\ i =/= J ) /\ ( `' U ` i ) = ( ( # ` U ) - 1 ) ) -> ( `' U ` i ) = ( ( # ` U ) - 1 ) ) | 
						
							| 195 | 1 2 189 190 191 192 7 8 193 194 | cycpmco2lem5 |  |-  ( ( ( ( ph /\ i e. ran W ) /\ i =/= J ) /\ ( `' U ` i ) = ( ( # ` U ) - 1 ) ) -> ( ( M ` U ) ` i ) = ( ( M ` W ) ` i ) ) | 
						
							| 196 |  | f1f1orn |  |-  ( U : dom U -1-1-> D -> U : dom U -1-1-onto-> ran U ) | 
						
							| 197 | 47 196 | syl |  |-  ( ph -> U : dom U -1-1-onto-> ran U ) | 
						
							| 198 |  | ssun1 |  |-  ran W C_ ( ran W u. { I } ) | 
						
							| 199 | 1 2 3 4 5 6 7 8 | cycpmco2rn |  |-  ( ph -> ran U = ( ran W u. { I } ) ) | 
						
							| 200 | 198 199 | sseqtrrid |  |-  ( ph -> ran W C_ ran U ) | 
						
							| 201 | 200 | sselda |  |-  ( ( ph /\ i e. ran W ) -> i e. ran U ) | 
						
							| 202 |  | f1ocnvdm |  |-  ( ( U : dom U -1-1-onto-> ran U /\ i e. ran U ) -> ( `' U ` i ) e. dom U ) | 
						
							| 203 | 197 201 202 | syl2an2r |  |-  ( ( ph /\ i e. ran W ) -> ( `' U ` i ) e. dom U ) | 
						
							| 204 |  | wrddm |  |-  ( U e. Word D -> dom U = ( 0 ..^ ( # ` U ) ) ) | 
						
							| 205 | 46 204 | syl |  |-  ( ph -> dom U = ( 0 ..^ ( # ` U ) ) ) | 
						
							| 206 | 205 | adantr |  |-  ( ( ph /\ i e. ran W ) -> dom U = ( 0 ..^ ( # ` U ) ) ) | 
						
							| 207 | 203 206 | eleqtrd |  |-  ( ( ph /\ i e. ran W ) -> ( `' U ` i ) e. ( 0 ..^ ( # ` U ) ) ) | 
						
							| 208 | 65 | nn0zd |  |-  ( ph -> ( # ` W ) e. ZZ ) | 
						
							| 209 | 208 | peano2zd |  |-  ( ph -> ( ( # ` W ) + 1 ) e. ZZ ) | 
						
							| 210 | 110 209 | eqeltrd |  |-  ( ph -> ( # ` U ) e. ZZ ) | 
						
							| 211 |  | fzoval |  |-  ( ( # ` U ) e. ZZ -> ( 0 ..^ ( # ` U ) ) = ( 0 ... ( ( # ` U ) - 1 ) ) ) | 
						
							| 212 | 210 211 | syl |  |-  ( ph -> ( 0 ..^ ( # ` U ) ) = ( 0 ... ( ( # ` U ) - 1 ) ) ) | 
						
							| 213 | 212 | adantr |  |-  ( ( ph /\ i e. ran W ) -> ( 0 ..^ ( # ` U ) ) = ( 0 ... ( ( # ` U ) - 1 ) ) ) | 
						
							| 214 | 207 213 | eleqtrd |  |-  ( ( ph /\ i e. ran W ) -> ( `' U ` i ) e. ( 0 ... ( ( # ` U ) - 1 ) ) ) | 
						
							| 215 |  | elfzr |  |-  ( ( `' U ` i ) e. ( 0 ... ( ( # ` U ) - 1 ) ) -> ( ( `' U ` i ) e. ( 0 ..^ ( ( # ` U ) - 1 ) ) \/ ( `' U ` i ) = ( ( # ` U ) - 1 ) ) ) | 
						
							| 216 | 214 215 | syl |  |-  ( ( ph /\ i e. ran W ) -> ( ( `' U ` i ) e. ( 0 ..^ ( ( # ` U ) - 1 ) ) \/ ( `' U ` i ) = ( ( # ` U ) - 1 ) ) ) | 
						
							| 217 |  | simpr |  |-  ( ( ( ph /\ i e. ran W ) /\ ( `' U ` i ) e. ( 0 ..^ ( ( # ` U ) - 1 ) ) ) -> ( `' U ` i ) e. ( 0 ..^ ( ( # ` U ) - 1 ) ) ) | 
						
							| 218 | 99 | ad2antrr |  |-  ( ( ( ph /\ i e. ran W ) /\ ( `' U ` i ) e. ( 0 ..^ ( ( # ` U ) - 1 ) ) ) -> E e. ZZ ) | 
						
							| 219 |  | fzospliti |  |-  ( ( ( `' U ` i ) e. ( 0 ..^ ( ( # ` U ) - 1 ) ) /\ E e. ZZ ) -> ( ( `' U ` i ) e. ( 0 ..^ E ) \/ ( `' U ` i ) e. ( E ..^ ( ( # ` U ) - 1 ) ) ) ) | 
						
							| 220 | 217 218 219 | syl2anc |  |-  ( ( ( ph /\ i e. ran W ) /\ ( `' U ` i ) e. ( 0 ..^ ( ( # ` U ) - 1 ) ) ) -> ( ( `' U ` i ) e. ( 0 ..^ E ) \/ ( `' U ` i ) e. ( E ..^ ( ( # ` U ) - 1 ) ) ) ) | 
						
							| 221 | 220 | ex |  |-  ( ( ph /\ i e. ran W ) -> ( ( `' U ` i ) e. ( 0 ..^ ( ( # ` U ) - 1 ) ) -> ( ( `' U ` i ) e. ( 0 ..^ E ) \/ ( `' U ` i ) e. ( E ..^ ( ( # ` U ) - 1 ) ) ) ) ) | 
						
							| 222 | 221 | orim1d |  |-  ( ( ph /\ i e. ran W ) -> ( ( ( `' U ` i ) e. ( 0 ..^ ( ( # ` U ) - 1 ) ) \/ ( `' U ` i ) = ( ( # ` U ) - 1 ) ) -> ( ( ( `' U ` i ) e. ( 0 ..^ E ) \/ ( `' U ` i ) e. ( E ..^ ( ( # ` U ) - 1 ) ) ) \/ ( `' U ` i ) = ( ( # ` U ) - 1 ) ) ) ) | 
						
							| 223 | 216 222 | mpd |  |-  ( ( ph /\ i e. ran W ) -> ( ( ( `' U ` i ) e. ( 0 ..^ E ) \/ ( `' U ` i ) e. ( E ..^ ( ( # ` U ) - 1 ) ) ) \/ ( `' U ` i ) = ( ( # ` U ) - 1 ) ) ) | 
						
							| 224 |  | df-3or |  |-  ( ( ( `' U ` i ) e. ( 0 ..^ E ) \/ ( `' U ` i ) e. ( E ..^ ( ( # ` U ) - 1 ) ) \/ ( `' U ` i ) = ( ( # ` U ) - 1 ) ) <-> ( ( ( `' U ` i ) e. ( 0 ..^ E ) \/ ( `' U ` i ) e. ( E ..^ ( ( # ` U ) - 1 ) ) ) \/ ( `' U ` i ) = ( ( # ` U ) - 1 ) ) ) | 
						
							| 225 | 223 224 | sylibr |  |-  ( ( ph /\ i e. ran W ) -> ( ( `' U ` i ) e. ( 0 ..^ E ) \/ ( `' U ` i ) e. ( E ..^ ( ( # ` U ) - 1 ) ) \/ ( `' U ` i ) = ( ( # ` U ) - 1 ) ) ) | 
						
							| 226 | 225 | adantr |  |-  ( ( ( ph /\ i e. ran W ) /\ i =/= J ) -> ( ( `' U ` i ) e. ( 0 ..^ E ) \/ ( `' U ` i ) e. ( E ..^ ( ( # ` U ) - 1 ) ) \/ ( `' U ` i ) = ( ( # ` U ) - 1 ) ) ) | 
						
							| 227 | 180 188 195 226 | mpjao3dan |  |-  ( ( ( ph /\ i e. ran W ) /\ i =/= J ) -> ( ( M ` U ) ` i ) = ( ( M ` W ) ` i ) ) | 
						
							| 228 | 172 227 | eqtr4d |  |-  ( ( ( ph /\ i e. ran W ) /\ i =/= J ) -> ( ( M ` W ) ` ( ( M ` <" I J "> ) ` i ) ) = ( ( M ` U ) ` i ) ) | 
						
							| 229 | 151 228 | pm2.61dane |  |-  ( ( ph /\ i e. ran W ) -> ( ( M ` W ) ` ( ( M ` <" I J "> ) ` i ) ) = ( ( M ` U ) ` i ) ) | 
						
							| 230 | 229 | adantlr |  |-  ( ( ( ph /\ i e. D ) /\ i e. ran W ) -> ( ( M ` W ) ` ( ( M ` <" I J "> ) ` i ) ) = ( ( M ` U ) ` i ) ) | 
						
							| 231 | 1 2 3 4 5 6 7 8 | cycpmco2lem4 |  |-  ( ph -> ( ( M ` W ) ` ( ( M ` <" I J "> ) ` I ) ) = ( ( M ` U ) ` I ) ) | 
						
							| 232 | 231 | ad2antrr |  |-  ( ( ( ph /\ i e. ( D \ ran W ) ) /\ i = I ) -> ( ( M ` W ) ` ( ( M ` <" I J "> ) ` I ) ) = ( ( M ` U ) ` I ) ) | 
						
							| 233 |  | simpr |  |-  ( ( ( ph /\ i e. ( D \ ran W ) ) /\ i = I ) -> i = I ) | 
						
							| 234 | 233 | fveq2d |  |-  ( ( ( ph /\ i e. ( D \ ran W ) ) /\ i = I ) -> ( ( M ` <" I J "> ) ` i ) = ( ( M ` <" I J "> ) ` I ) ) | 
						
							| 235 | 234 | fveq2d |  |-  ( ( ( ph /\ i e. ( D \ ran W ) ) /\ i = I ) -> ( ( M ` W ) ` ( ( M ` <" I J "> ) ` i ) ) = ( ( M ` W ) ` ( ( M ` <" I J "> ) ` I ) ) ) | 
						
							| 236 | 233 | fveq2d |  |-  ( ( ( ph /\ i e. ( D \ ran W ) ) /\ i = I ) -> ( ( M ` U ) ` i ) = ( ( M ` U ) ` I ) ) | 
						
							| 237 | 232 235 236 | 3eqtr4d |  |-  ( ( ( ph /\ i e. ( D \ ran W ) ) /\ i = I ) -> ( ( M ` W ) ` ( ( M ` <" I J "> ) ` i ) ) = ( ( M ` U ) ` i ) ) | 
						
							| 238 | 3 | ad2antrr |  |-  ( ( ( ph /\ i e. ( D \ ran W ) ) /\ i =/= I ) -> D e. V ) | 
						
							| 239 | 20 | ad2antrr |  |-  ( ( ( ph /\ i e. ( D \ ran W ) ) /\ i =/= I ) -> W e. Word D ) | 
						
							| 240 | 27 | ad2antrr |  |-  ( ( ( ph /\ i e. ( D \ ran W ) ) /\ i =/= I ) -> W : dom W -1-1-> D ) | 
						
							| 241 |  | simplr |  |-  ( ( ( ph /\ i e. ( D \ ran W ) ) /\ i =/= I ) -> i e. ( D \ ran W ) ) | 
						
							| 242 | 241 | eldifad |  |-  ( ( ( ph /\ i e. ( D \ ran W ) ) /\ i =/= I ) -> i e. D ) | 
						
							| 243 | 241 | eldifbd |  |-  ( ( ( ph /\ i e. ( D \ ran W ) ) /\ i =/= I ) -> -. i e. ran W ) | 
						
							| 244 | 1 238 239 240 242 243 | cycpmfv3 |  |-  ( ( ( ph /\ i e. ( D \ ran W ) ) /\ i =/= I ) -> ( ( M ` W ) ` i ) = i ) | 
						
							| 245 | 153 | ad2antrr |  |-  ( ( ( ph /\ i e. ( D \ ran W ) ) /\ i =/= I ) -> <" I J "> e. Word D ) | 
						
							| 246 | 155 | ad2antrr |  |-  ( ( ( ph /\ i e. ( D \ ran W ) ) /\ i =/= I ) -> <" I J "> : dom <" I J "> -1-1-> D ) | 
						
							| 247 |  | simpr |  |-  ( ( ( ph /\ i e. ( D \ ran W ) ) /\ i =/= I ) -> i =/= I ) | 
						
							| 248 |  | eldifn |  |-  ( i e. ( D \ ran W ) -> -. i e. ran W ) | 
						
							| 249 |  | nelne2 |  |-  ( ( J e. ran W /\ -. i e. ran W ) -> J =/= i ) | 
						
							| 250 | 6 248 249 | syl2an |  |-  ( ( ph /\ i e. ( D \ ran W ) ) -> J =/= i ) | 
						
							| 251 | 250 | necomd |  |-  ( ( ph /\ i e. ( D \ ran W ) ) -> i =/= J ) | 
						
							| 252 | 251 | adantr |  |-  ( ( ( ph /\ i e. ( D \ ran W ) ) /\ i =/= I ) -> i =/= J ) | 
						
							| 253 | 247 252 | nelprd |  |-  ( ( ( ph /\ i e. ( D \ ran W ) ) /\ i =/= I ) -> -. i e. { I , J } ) | 
						
							| 254 | 168 | ad2antrr |  |-  ( ( ( ph /\ i e. ( D \ ran W ) ) /\ i =/= I ) -> ( -. i e. ran <" I J "> <-> -. i e. { I , J } ) ) | 
						
							| 255 | 253 254 | mpbird |  |-  ( ( ( ph /\ i e. ( D \ ran W ) ) /\ i =/= I ) -> -. i e. ran <" I J "> ) | 
						
							| 256 | 1 238 245 246 242 255 | cycpmfv3 |  |-  ( ( ( ph /\ i e. ( D \ ran W ) ) /\ i =/= I ) -> ( ( M ` <" I J "> ) ` i ) = i ) | 
						
							| 257 | 256 | fveq2d |  |-  ( ( ( ph /\ i e. ( D \ ran W ) ) /\ i =/= I ) -> ( ( M ` W ) ` ( ( M ` <" I J "> ) ` i ) ) = ( ( M ` W ) ` i ) ) | 
						
							| 258 | 46 | ad2antrr |  |-  ( ( ( ph /\ i e. ( D \ ran W ) ) /\ i =/= I ) -> U e. Word D ) | 
						
							| 259 | 47 | ad2antrr |  |-  ( ( ( ph /\ i e. ( D \ ran W ) ) /\ i =/= I ) -> U : dom U -1-1-> D ) | 
						
							| 260 | 199 | ad2antrr |  |-  ( ( ( ph /\ i e. ( D \ ran W ) ) /\ i =/= I ) -> ran U = ( ran W u. { I } ) ) | 
						
							| 261 |  | nelsn |  |-  ( i =/= I -> -. i e. { I } ) | 
						
							| 262 | 261 | adantl |  |-  ( ( ( ph /\ i e. ( D \ ran W ) ) /\ i =/= I ) -> -. i e. { I } ) | 
						
							| 263 |  | nelun |  |-  ( ran U = ( ran W u. { I } ) -> ( -. i e. ran U <-> ( -. i e. ran W /\ -. i e. { I } ) ) ) | 
						
							| 264 | 263 | biimpar |  |-  ( ( ran U = ( ran W u. { I } ) /\ ( -. i e. ran W /\ -. i e. { I } ) ) -> -. i e. ran U ) | 
						
							| 265 | 260 243 262 264 | syl12anc |  |-  ( ( ( ph /\ i e. ( D \ ran W ) ) /\ i =/= I ) -> -. i e. ran U ) | 
						
							| 266 | 1 238 258 259 242 265 | cycpmfv3 |  |-  ( ( ( ph /\ i e. ( D \ ran W ) ) /\ i =/= I ) -> ( ( M ` U ) ` i ) = i ) | 
						
							| 267 | 244 257 266 | 3eqtr4d |  |-  ( ( ( ph /\ i e. ( D \ ran W ) ) /\ i =/= I ) -> ( ( M ` W ) ` ( ( M ` <" I J "> ) ` i ) ) = ( ( M ` U ) ` i ) ) | 
						
							| 268 | 237 267 | pm2.61dane |  |-  ( ( ph /\ i e. ( D \ ran W ) ) -> ( ( M ` W ) ` ( ( M ` <" I J "> ) ` i ) ) = ( ( M ` U ) ` i ) ) | 
						
							| 269 | 268 | adantlr |  |-  ( ( ( ph /\ i e. D ) /\ i e. ( D \ ran W ) ) -> ( ( M ` W ) ` ( ( M ` <" I J "> ) ` i ) ) = ( ( M ` U ) ` i ) ) | 
						
							| 270 |  | undif |  |-  ( ran W C_ D <-> ( ran W u. ( D \ ran W ) ) = D ) | 
						
							| 271 | 30 270 | sylib |  |-  ( ph -> ( ran W u. ( D \ ran W ) ) = D ) | 
						
							| 272 | 271 | eleq2d |  |-  ( ph -> ( i e. ( ran W u. ( D \ ran W ) ) <-> i e. D ) ) | 
						
							| 273 |  | elun |  |-  ( i e. ( ran W u. ( D \ ran W ) ) <-> ( i e. ran W \/ i e. ( D \ ran W ) ) ) | 
						
							| 274 | 272 273 | bitr3di |  |-  ( ph -> ( i e. D <-> ( i e. ran W \/ i e. ( D \ ran W ) ) ) ) | 
						
							| 275 | 274 | biimpa |  |-  ( ( ph /\ i e. D ) -> ( i e. ran W \/ i e. ( D \ ran W ) ) ) | 
						
							| 276 | 230 269 275 | mpjaodan |  |-  ( ( ph /\ i e. D ) -> ( ( M ` W ) ` ( ( M ` <" I J "> ) ` i ) ) = ( ( M ` U ) ` i ) ) | 
						
							| 277 | 53 276 | eqtrd |  |-  ( ( ph /\ i e. D ) -> ( ( ( M ` W ) o. ( M ` <" I J "> ) ) ` i ) = ( ( M ` U ) ` i ) ) | 
						
							| 278 | 42 51 277 | eqfnfvd |  |-  ( ph -> ( ( M ` W ) o. ( M ` <" I J "> ) ) = ( M ` U ) ) |