Step |
Hyp |
Ref |
Expression |
1 |
|
cycpm2.c |
|- C = ( toCyc ` D ) |
2 |
|
cycpm2.d |
|- ( ph -> D e. V ) |
3 |
|
cycpm2.i |
|- ( ph -> I e. D ) |
4 |
|
cycpm2.j |
|- ( ph -> J e. D ) |
5 |
|
cycpm2.1 |
|- ( ph -> I =/= J ) |
6 |
|
cycpm2cl.s |
|- S = ( SymGrp ` D ) |
7 |
3 4
|
s2cld |
|- ( ph -> <" I J "> e. Word D ) |
8 |
3 4 5
|
s2f1 |
|- ( ph -> <" I J "> : dom <" I J "> -1-1-> D ) |
9 |
|
2pos |
|- 0 < 2 |
10 |
|
s2len |
|- ( # ` <" I J "> ) = 2 |
11 |
9 10
|
breqtrri |
|- 0 < ( # ` <" I J "> ) |
12 |
11
|
a1i |
|- ( ph -> 0 < ( # ` <" I J "> ) ) |
13 |
10
|
oveq1i |
|- ( ( # ` <" I J "> ) - 1 ) = ( 2 - 1 ) |
14 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
15 |
13 14
|
eqtr2i |
|- 1 = ( ( # ` <" I J "> ) - 1 ) |
16 |
15
|
a1i |
|- ( ph -> 1 = ( ( # ` <" I J "> ) - 1 ) ) |
17 |
1 2 7 8 12 16
|
cycpmfv2 |
|- ( ph -> ( ( C ` <" I J "> ) ` ( <" I J "> ` 1 ) ) = ( <" I J "> ` 0 ) ) |
18 |
|
s2fv1 |
|- ( J e. D -> ( <" I J "> ` 1 ) = J ) |
19 |
4 18
|
syl |
|- ( ph -> ( <" I J "> ` 1 ) = J ) |
20 |
19
|
fveq2d |
|- ( ph -> ( ( C ` <" I J "> ) ` ( <" I J "> ` 1 ) ) = ( ( C ` <" I J "> ) ` J ) ) |
21 |
|
s2fv0 |
|- ( I e. D -> ( <" I J "> ` 0 ) = I ) |
22 |
3 21
|
syl |
|- ( ph -> ( <" I J "> ` 0 ) = I ) |
23 |
17 20 22
|
3eqtr3d |
|- ( ph -> ( ( C ` <" I J "> ) ` J ) = I ) |