| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycpm3.c |  |-  C = ( toCyc ` D ) | 
						
							| 2 |  | cycpm3.s |  |-  S = ( SymGrp ` D ) | 
						
							| 3 |  | cycpm3.d |  |-  ( ph -> D e. V ) | 
						
							| 4 |  | cycpm3.i |  |-  ( ph -> I e. D ) | 
						
							| 5 |  | cycpm3.j |  |-  ( ph -> J e. D ) | 
						
							| 6 |  | cycpm3.k |  |-  ( ph -> K e. D ) | 
						
							| 7 |  | cycpm3.1 |  |-  ( ph -> I =/= J ) | 
						
							| 8 |  | cycpm3.2 |  |-  ( ph -> J =/= K ) | 
						
							| 9 |  | cycpm3.3 |  |-  ( ph -> K =/= I ) | 
						
							| 10 | 4 5 | s2cld |  |-  ( ph -> <" I J "> e. Word D ) | 
						
							| 11 | 4 5 7 | s2f1 |  |-  ( ph -> <" I J "> : dom <" I J "> -1-1-> D ) | 
						
							| 12 | 8 | necomd |  |-  ( ph -> K =/= J ) | 
						
							| 13 | 9 12 | nelprd |  |-  ( ph -> -. K e. { I , J } ) | 
						
							| 14 | 4 5 | s2rn |  |-  ( ph -> ran <" I J "> = { I , J } ) | 
						
							| 15 | 13 14 | neleqtrrd |  |-  ( ph -> -. K e. ran <" I J "> ) | 
						
							| 16 | 1 3 10 11 6 15 | cycpmfv3 |  |-  ( ph -> ( ( C ` <" I J "> ) ` K ) = K ) |