Description: Function value of a 2-cycle outside of its orbit. (Contributed by Thierry Arnoux, 19-Sep-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cycpm3.c | |- C = ( toCyc ` D ) |
|
cycpm3.s | |- S = ( SymGrp ` D ) |
||
cycpm3.d | |- ( ph -> D e. V ) |
||
cycpm3.i | |- ( ph -> I e. D ) |
||
cycpm3.j | |- ( ph -> J e. D ) |
||
cycpm3.k | |- ( ph -> K e. D ) |
||
cycpm3.1 | |- ( ph -> I =/= J ) |
||
cycpm3.2 | |- ( ph -> J =/= K ) |
||
cycpm3.3 | |- ( ph -> K =/= I ) |
||
Assertion | cyc2fvx | |- ( ph -> ( ( C ` <" I J "> ) ` K ) = K ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cycpm3.c | |- C = ( toCyc ` D ) |
|
2 | cycpm3.s | |- S = ( SymGrp ` D ) |
|
3 | cycpm3.d | |- ( ph -> D e. V ) |
|
4 | cycpm3.i | |- ( ph -> I e. D ) |
|
5 | cycpm3.j | |- ( ph -> J e. D ) |
|
6 | cycpm3.k | |- ( ph -> K e. D ) |
|
7 | cycpm3.1 | |- ( ph -> I =/= J ) |
|
8 | cycpm3.2 | |- ( ph -> J =/= K ) |
|
9 | cycpm3.3 | |- ( ph -> K =/= I ) |
|
10 | 4 5 | s2cld | |- ( ph -> <" I J "> e. Word D ) |
11 | 4 5 7 | s2f1 | |- ( ph -> <" I J "> : dom <" I J "> -1-1-> D ) |
12 | 8 | necomd | |- ( ph -> K =/= J ) |
13 | 9 12 | nelprd | |- ( ph -> -. K e. { I , J } ) |
14 | 4 5 | s2rn | |- ( ph -> ran <" I J "> = { I , J } ) |
15 | 13 14 | neleqtrrd | |- ( ph -> -. K e. ran <" I J "> ) |
16 | 1 3 10 11 6 15 | cycpmfv3 | |- ( ph -> ( ( C ` <" I J "> ) ` K ) = K ) |