| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cycpm3.c |
|- C = ( toCyc ` D ) |
| 2 |
|
cycpm3.s |
|- S = ( SymGrp ` D ) |
| 3 |
|
cycpm3.d |
|- ( ph -> D e. V ) |
| 4 |
|
cycpm3.i |
|- ( ph -> I e. D ) |
| 5 |
|
cycpm3.j |
|- ( ph -> J e. D ) |
| 6 |
|
cycpm3.k |
|- ( ph -> K e. D ) |
| 7 |
|
cycpm3.1 |
|- ( ph -> I =/= J ) |
| 8 |
|
cycpm3.2 |
|- ( ph -> J =/= K ) |
| 9 |
|
cycpm3.3 |
|- ( ph -> K =/= I ) |
| 10 |
4 5
|
s2cld |
|- ( ph -> <" I J "> e. Word D ) |
| 11 |
4 5 7
|
s2f1 |
|- ( ph -> <" I J "> : dom <" I J "> -1-1-> D ) |
| 12 |
8
|
necomd |
|- ( ph -> K =/= J ) |
| 13 |
9 12
|
nelprd |
|- ( ph -> -. K e. { I , J } ) |
| 14 |
4 5
|
s2rn |
|- ( ph -> ran <" I J "> = { I , J } ) |
| 15 |
13 14
|
neleqtrrd |
|- ( ph -> -. K e. ran <" I J "> ) |
| 16 |
1 3 10 11 6 15
|
cycpmfv3 |
|- ( ph -> ( ( C ` <" I J "> ) ` K ) = K ) |