Metamath Proof Explorer


Theorem cyc2fvx

Description: Function value of a 2-cycle outside of its orbit. (Contributed by Thierry Arnoux, 19-Sep-2023)

Ref Expression
Hypotheses cycpm3.c
|- C = ( toCyc ` D )
cycpm3.s
|- S = ( SymGrp ` D )
cycpm3.d
|- ( ph -> D e. V )
cycpm3.i
|- ( ph -> I e. D )
cycpm3.j
|- ( ph -> J e. D )
cycpm3.k
|- ( ph -> K e. D )
cycpm3.1
|- ( ph -> I =/= J )
cycpm3.2
|- ( ph -> J =/= K )
cycpm3.3
|- ( ph -> K =/= I )
Assertion cyc2fvx
|- ( ph -> ( ( C ` <" I J "> ) ` K ) = K )

Proof

Step Hyp Ref Expression
1 cycpm3.c
 |-  C = ( toCyc ` D )
2 cycpm3.s
 |-  S = ( SymGrp ` D )
3 cycpm3.d
 |-  ( ph -> D e. V )
4 cycpm3.i
 |-  ( ph -> I e. D )
5 cycpm3.j
 |-  ( ph -> J e. D )
6 cycpm3.k
 |-  ( ph -> K e. D )
7 cycpm3.1
 |-  ( ph -> I =/= J )
8 cycpm3.2
 |-  ( ph -> J =/= K )
9 cycpm3.3
 |-  ( ph -> K =/= I )
10 4 5 s2cld
 |-  ( ph -> <" I J "> e. Word D )
11 4 5 7 s2f1
 |-  ( ph -> <" I J "> : dom <" I J "> -1-1-> D )
12 8 necomd
 |-  ( ph -> K =/= J )
13 9 12 nelprd
 |-  ( ph -> -. K e. { I , J } )
14 4 5 s2rn
 |-  ( ph -> ran <" I J "> = { I , J } )
15 13 14 neleqtrrd
 |-  ( ph -> -. K e. ran <" I J "> )
16 1 3 10 11 6 15 cycpmfv3
 |-  ( ph -> ( ( C ` <" I J "> ) ` K ) = K )