Metamath Proof Explorer


Theorem cyc2fvx

Description: Function value of a 2-cycle outside of its orbit. (Contributed by Thierry Arnoux, 19-Sep-2023)

Ref Expression
Hypotheses cycpm3.c 𝐶 = ( toCyc ‘ 𝐷 )
cycpm3.s 𝑆 = ( SymGrp ‘ 𝐷 )
cycpm3.d ( 𝜑𝐷𝑉 )
cycpm3.i ( 𝜑𝐼𝐷 )
cycpm3.j ( 𝜑𝐽𝐷 )
cycpm3.k ( 𝜑𝐾𝐷 )
cycpm3.1 ( 𝜑𝐼𝐽 )
cycpm3.2 ( 𝜑𝐽𝐾 )
cycpm3.3 ( 𝜑𝐾𝐼 )
Assertion cyc2fvx ( 𝜑 → ( ( 𝐶 ‘ ⟨“ 𝐼 𝐽 ”⟩ ) ‘ 𝐾 ) = 𝐾 )

Proof

Step Hyp Ref Expression
1 cycpm3.c 𝐶 = ( toCyc ‘ 𝐷 )
2 cycpm3.s 𝑆 = ( SymGrp ‘ 𝐷 )
3 cycpm3.d ( 𝜑𝐷𝑉 )
4 cycpm3.i ( 𝜑𝐼𝐷 )
5 cycpm3.j ( 𝜑𝐽𝐷 )
6 cycpm3.k ( 𝜑𝐾𝐷 )
7 cycpm3.1 ( 𝜑𝐼𝐽 )
8 cycpm3.2 ( 𝜑𝐽𝐾 )
9 cycpm3.3 ( 𝜑𝐾𝐼 )
10 4 5 s2cld ( 𝜑 → ⟨“ 𝐼 𝐽 ”⟩ ∈ Word 𝐷 )
11 4 5 7 s2f1 ( 𝜑 → ⟨“ 𝐼 𝐽 ”⟩ : dom ⟨“ 𝐼 𝐽 ”⟩ –1-1𝐷 )
12 8 necomd ( 𝜑𝐾𝐽 )
13 9 12 nelprd ( 𝜑 → ¬ 𝐾 ∈ { 𝐼 , 𝐽 } )
14 4 5 s2rn ( 𝜑 → ran ⟨“ 𝐼 𝐽 ”⟩ = { 𝐼 , 𝐽 } )
15 13 14 neleqtrrd ( 𝜑 → ¬ 𝐾 ∈ ran ⟨“ 𝐼 𝐽 ”⟩ )
16 1 3 10 11 6 15 cycpmfv3 ( 𝜑 → ( ( 𝐶 ‘ ⟨“ 𝐼 𝐽 ”⟩ ) ‘ 𝐾 ) = 𝐾 )