| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycpm3.c | ⊢ 𝐶  =  ( toCyc ‘ 𝐷 ) | 
						
							| 2 |  | cycpm3.s | ⊢ 𝑆  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 3 |  | cycpm3.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑉 ) | 
						
							| 4 |  | cycpm3.i | ⊢ ( 𝜑  →  𝐼  ∈  𝐷 ) | 
						
							| 5 |  | cycpm3.j | ⊢ ( 𝜑  →  𝐽  ∈  𝐷 ) | 
						
							| 6 |  | cycpm3.k | ⊢ ( 𝜑  →  𝐾  ∈  𝐷 ) | 
						
							| 7 |  | cycpm3.1 | ⊢ ( 𝜑  →  𝐼  ≠  𝐽 ) | 
						
							| 8 |  | cycpm3.2 | ⊢ ( 𝜑  →  𝐽  ≠  𝐾 ) | 
						
							| 9 |  | cycpm3.3 | ⊢ ( 𝜑  →  𝐾  ≠  𝐼 ) | 
						
							| 10 | 4 5 | s2cld | ⊢ ( 𝜑  →  〈“ 𝐼 𝐽 ”〉  ∈  Word  𝐷 ) | 
						
							| 11 | 4 5 7 | s2f1 | ⊢ ( 𝜑  →  〈“ 𝐼 𝐽 ”〉 : dom  〈“ 𝐼 𝐽 ”〉 –1-1→ 𝐷 ) | 
						
							| 12 | 8 | necomd | ⊢ ( 𝜑  →  𝐾  ≠  𝐽 ) | 
						
							| 13 | 9 12 | nelprd | ⊢ ( 𝜑  →  ¬  𝐾  ∈  { 𝐼 ,  𝐽 } ) | 
						
							| 14 | 4 5 | s2rn | ⊢ ( 𝜑  →  ran  〈“ 𝐼 𝐽 ”〉  =  { 𝐼 ,  𝐽 } ) | 
						
							| 15 | 13 14 | neleqtrrd | ⊢ ( 𝜑  →  ¬  𝐾  ∈  ran  〈“ 𝐼 𝐽 ”〉 ) | 
						
							| 16 | 1 3 10 11 6 15 | cycpmfv3 | ⊢ ( 𝜑  →  ( ( 𝐶 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝐾 )  =  𝐾 ) |