| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cycpm3.c |
⊢ 𝐶 = ( toCyc ‘ 𝐷 ) |
| 2 |
|
cycpm3.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) |
| 3 |
|
cycpm3.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
| 4 |
|
cycpm3.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝐷 ) |
| 5 |
|
cycpm3.j |
⊢ ( 𝜑 → 𝐽 ∈ 𝐷 ) |
| 6 |
|
cycpm3.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝐷 ) |
| 7 |
|
cycpm3.1 |
⊢ ( 𝜑 → 𝐼 ≠ 𝐽 ) |
| 8 |
|
cycpm3.2 |
⊢ ( 𝜑 → 𝐽 ≠ 𝐾 ) |
| 9 |
|
cycpm3.3 |
⊢ ( 𝜑 → 𝐾 ≠ 𝐼 ) |
| 10 |
4 5
|
s2cld |
⊢ ( 𝜑 → 〈“ 𝐼 𝐽 ”〉 ∈ Word 𝐷 ) |
| 11 |
4 5 7
|
s2f1 |
⊢ ( 𝜑 → 〈“ 𝐼 𝐽 ”〉 : dom 〈“ 𝐼 𝐽 ”〉 –1-1→ 𝐷 ) |
| 12 |
8
|
necomd |
⊢ ( 𝜑 → 𝐾 ≠ 𝐽 ) |
| 13 |
9 12
|
nelprd |
⊢ ( 𝜑 → ¬ 𝐾 ∈ { 𝐼 , 𝐽 } ) |
| 14 |
4 5
|
s2rn |
⊢ ( 𝜑 → ran 〈“ 𝐼 𝐽 ”〉 = { 𝐼 , 𝐽 } ) |
| 15 |
13 14
|
neleqtrrd |
⊢ ( 𝜑 → ¬ 𝐾 ∈ ran 〈“ 𝐼 𝐽 ”〉 ) |
| 16 |
1 3 10 11 6 15
|
cycpmfv3 |
⊢ ( 𝜑 → ( ( 𝐶 ‘ 〈“ 𝐼 𝐽 ”〉 ) ‘ 𝐾 ) = 𝐾 ) |