Step |
Hyp |
Ref |
Expression |
1 |
|
cycpmco2.c |
|- M = ( toCyc ` D ) |
2 |
|
cycpmco2.s |
|- S = ( SymGrp ` D ) |
3 |
|
cycpmco2.d |
|- ( ph -> D e. V ) |
4 |
|
cycpmco2.w |
|- ( ph -> W e. dom M ) |
5 |
|
cycpmco2.i |
|- ( ph -> I e. ( D \ ran W ) ) |
6 |
|
cycpmco2.j |
|- ( ph -> J e. ran W ) |
7 |
|
cycpmco2.e |
|- E = ( ( `' W ` J ) + 1 ) |
8 |
|
cycpmco2.1 |
|- U = ( W splice <. E , E , <" I "> >. ) |
9 |
|
cycpmco2lem.1 |
|- ( ph -> K e. ran W ) |
10 |
|
cycpmco2lem6.2 |
|- ( ph -> K =/= I ) |
11 |
|
cycpmco2lem6.1 |
|- ( ph -> ( `' U ` K ) e. ( E ..^ ( ( # ` U ) - 1 ) ) ) |
12 |
|
ssrab2 |
|- { w e. Word D | w : dom w -1-1-> D } C_ Word D |
13 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
14 |
1 2 13
|
tocycf |
|- ( D e. V -> M : { w e. Word D | w : dom w -1-1-> D } --> ( Base ` S ) ) |
15 |
3 14
|
syl |
|- ( ph -> M : { w e. Word D | w : dom w -1-1-> D } --> ( Base ` S ) ) |
16 |
15
|
fdmd |
|- ( ph -> dom M = { w e. Word D | w : dom w -1-1-> D } ) |
17 |
4 16
|
eleqtrd |
|- ( ph -> W e. { w e. Word D | w : dom w -1-1-> D } ) |
18 |
12 17
|
sselid |
|- ( ph -> W e. Word D ) |
19 |
5
|
eldifad |
|- ( ph -> I e. D ) |
20 |
19
|
s1cld |
|- ( ph -> <" I "> e. Word D ) |
21 |
|
splcl |
|- ( ( W e. Word D /\ <" I "> e. Word D ) -> ( W splice <. E , E , <" I "> >. ) e. Word D ) |
22 |
18 20 21
|
syl2anc |
|- ( ph -> ( W splice <. E , E , <" I "> >. ) e. Word D ) |
23 |
8 22
|
eqeltrid |
|- ( ph -> U e. Word D ) |
24 |
1 2 3 4 5 6 7 8
|
cycpmco2f1 |
|- ( ph -> U : dom U -1-1-> D ) |
25 |
|
fz0ssnn0 |
|- ( 0 ... ( # ` W ) ) C_ NN0 |
26 |
|
id |
|- ( w = W -> w = W ) |
27 |
|
dmeq |
|- ( w = W -> dom w = dom W ) |
28 |
|
eqidd |
|- ( w = W -> D = D ) |
29 |
26 27 28
|
f1eq123d |
|- ( w = W -> ( w : dom w -1-1-> D <-> W : dom W -1-1-> D ) ) |
30 |
29
|
elrab |
|- ( W e. { w e. Word D | w : dom w -1-1-> D } <-> ( W e. Word D /\ W : dom W -1-1-> D ) ) |
31 |
17 30
|
sylib |
|- ( ph -> ( W e. Word D /\ W : dom W -1-1-> D ) ) |
32 |
31
|
simprd |
|- ( ph -> W : dom W -1-1-> D ) |
33 |
|
f1cnv |
|- ( W : dom W -1-1-> D -> `' W : ran W -1-1-onto-> dom W ) |
34 |
|
f1of |
|- ( `' W : ran W -1-1-onto-> dom W -> `' W : ran W --> dom W ) |
35 |
32 33 34
|
3syl |
|- ( ph -> `' W : ran W --> dom W ) |
36 |
35 6
|
ffvelrnd |
|- ( ph -> ( `' W ` J ) e. dom W ) |
37 |
|
wrddm |
|- ( W e. Word D -> dom W = ( 0 ..^ ( # ` W ) ) ) |
38 |
18 37
|
syl |
|- ( ph -> dom W = ( 0 ..^ ( # ` W ) ) ) |
39 |
36 38
|
eleqtrd |
|- ( ph -> ( `' W ` J ) e. ( 0 ..^ ( # ` W ) ) ) |
40 |
|
fzofzp1 |
|- ( ( `' W ` J ) e. ( 0 ..^ ( # ` W ) ) -> ( ( `' W ` J ) + 1 ) e. ( 0 ... ( # ` W ) ) ) |
41 |
39 40
|
syl |
|- ( ph -> ( ( `' W ` J ) + 1 ) e. ( 0 ... ( # ` W ) ) ) |
42 |
7 41
|
eqeltrid |
|- ( ph -> E e. ( 0 ... ( # ` W ) ) ) |
43 |
25 42
|
sselid |
|- ( ph -> E e. NN0 ) |
44 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
45 |
43 44
|
eleqtrdi |
|- ( ph -> E e. ( ZZ>= ` 0 ) ) |
46 |
|
fzoss1 |
|- ( E e. ( ZZ>= ` 0 ) -> ( E ..^ ( ( # ` U ) - 1 ) ) C_ ( 0 ..^ ( ( # ` U ) - 1 ) ) ) |
47 |
45 46
|
syl |
|- ( ph -> ( E ..^ ( ( # ` U ) - 1 ) ) C_ ( 0 ..^ ( ( # ` U ) - 1 ) ) ) |
48 |
47 11
|
sseldd |
|- ( ph -> ( `' U ` K ) e. ( 0 ..^ ( ( # ` U ) - 1 ) ) ) |
49 |
1 3 23 24 48
|
cycpmfv1 |
|- ( ph -> ( ( M ` U ) ` ( U ` ( `' U ` K ) ) ) = ( U ` ( ( `' U ` K ) + 1 ) ) ) |
50 |
|
f1f1orn |
|- ( U : dom U -1-1-> D -> U : dom U -1-1-onto-> ran U ) |
51 |
24 50
|
syl |
|- ( ph -> U : dom U -1-1-onto-> ran U ) |
52 |
|
ssun1 |
|- ran W C_ ( ran W u. { I } ) |
53 |
1 2 3 4 5 6 7 8
|
cycpmco2rn |
|- ( ph -> ran U = ( ran W u. { I } ) ) |
54 |
52 53
|
sseqtrrid |
|- ( ph -> ran W C_ ran U ) |
55 |
54
|
sselda |
|- ( ( ph /\ K e. ran W ) -> K e. ran U ) |
56 |
|
f1ocnvfv2 |
|- ( ( U : dom U -1-1-onto-> ran U /\ K e. ran U ) -> ( U ` ( `' U ` K ) ) = K ) |
57 |
51 55 56
|
syl2an2r |
|- ( ( ph /\ K e. ran W ) -> ( U ` ( `' U ` K ) ) = K ) |
58 |
9 57
|
mpdan |
|- ( ph -> ( U ` ( `' U ` K ) ) = K ) |
59 |
58
|
fveq2d |
|- ( ph -> ( ( M ` U ) ` ( U ` ( `' U ` K ) ) ) = ( ( M ` U ) ` K ) ) |
60 |
8
|
a1i |
|- ( ph -> U = ( W splice <. E , E , <" I "> >. ) ) |
61 |
|
fzossz |
|- ( E ..^ ( ( # ` U ) - 1 ) ) C_ ZZ |
62 |
61 11
|
sselid |
|- ( ph -> ( `' U ` K ) e. ZZ ) |
63 |
62
|
zcnd |
|- ( ph -> ( `' U ` K ) e. CC ) |
64 |
43
|
nn0cnd |
|- ( ph -> E e. CC ) |
65 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
66 |
63 64 65
|
nppcan3d |
|- ( ph -> ( ( ( `' U ` K ) - E ) + ( 1 + E ) ) = ( ( `' U ` K ) + 1 ) ) |
67 |
66
|
eqcomd |
|- ( ph -> ( ( `' U ` K ) + 1 ) = ( ( ( `' U ` K ) - E ) + ( 1 + E ) ) ) |
68 |
60 67
|
fveq12d |
|- ( ph -> ( U ` ( ( `' U ` K ) + 1 ) ) = ( ( W splice <. E , E , <" I "> >. ) ` ( ( ( `' U ` K ) - E ) + ( 1 + E ) ) ) ) |
69 |
49 59 68
|
3eqtr3d |
|- ( ph -> ( ( M ` U ) ` K ) = ( ( W splice <. E , E , <" I "> >. ) ` ( ( ( `' U ` K ) - E ) + ( 1 + E ) ) ) ) |
70 |
63 64
|
npcand |
|- ( ph -> ( ( ( `' U ` K ) - E ) + E ) = ( `' U ` K ) ) |
71 |
70
|
fveq2d |
|- ( ph -> ( W ` ( ( ( `' U ` K ) - E ) + E ) ) = ( W ` ( `' U ` K ) ) ) |
72 |
|
nn0fz0 |
|- ( E e. NN0 <-> E e. ( 0 ... E ) ) |
73 |
43 72
|
sylib |
|- ( ph -> E e. ( 0 ... E ) ) |
74 |
|
lencl |
|- ( W e. Word D -> ( # ` W ) e. NN0 ) |
75 |
18 74
|
syl |
|- ( ph -> ( # ` W ) e. NN0 ) |
76 |
75
|
nn0cnd |
|- ( ph -> ( # ` W ) e. CC ) |
77 |
|
ovexd |
|- ( ph -> ( ( `' W ` J ) + 1 ) e. _V ) |
78 |
7 77
|
eqeltrid |
|- ( ph -> E e. _V ) |
79 |
|
splval |
|- ( ( W e. dom M /\ ( E e. _V /\ E e. _V /\ <" I "> e. Word D ) ) -> ( W splice <. E , E , <" I "> >. ) = ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) |
80 |
4 78 78 20 79
|
syl13anc |
|- ( ph -> ( W splice <. E , E , <" I "> >. ) = ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) |
81 |
8 80
|
eqtrid |
|- ( ph -> U = ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) |
82 |
81
|
fveq2d |
|- ( ph -> ( # ` U ) = ( # ` ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) ) |
83 |
|
pfxcl |
|- ( W e. Word D -> ( W prefix E ) e. Word D ) |
84 |
18 83
|
syl |
|- ( ph -> ( W prefix E ) e. Word D ) |
85 |
|
ccatcl |
|- ( ( ( W prefix E ) e. Word D /\ <" I "> e. Word D ) -> ( ( W prefix E ) ++ <" I "> ) e. Word D ) |
86 |
84 20 85
|
syl2anc |
|- ( ph -> ( ( W prefix E ) ++ <" I "> ) e. Word D ) |
87 |
|
swrdcl |
|- ( W e. Word D -> ( W substr <. E , ( # ` W ) >. ) e. Word D ) |
88 |
18 87
|
syl |
|- ( ph -> ( W substr <. E , ( # ` W ) >. ) e. Word D ) |
89 |
|
ccatlen |
|- ( ( ( ( W prefix E ) ++ <" I "> ) e. Word D /\ ( W substr <. E , ( # ` W ) >. ) e. Word D ) -> ( # ` ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) = ( ( # ` ( ( W prefix E ) ++ <" I "> ) ) + ( # ` ( W substr <. E , ( # ` W ) >. ) ) ) ) |
90 |
86 88 89
|
syl2anc |
|- ( ph -> ( # ` ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) = ( ( # ` ( ( W prefix E ) ++ <" I "> ) ) + ( # ` ( W substr <. E , ( # ` W ) >. ) ) ) ) |
91 |
|
ccatws1len |
|- ( ( W prefix E ) e. Word D -> ( # ` ( ( W prefix E ) ++ <" I "> ) ) = ( ( # ` ( W prefix E ) ) + 1 ) ) |
92 |
18 83 91
|
3syl |
|- ( ph -> ( # ` ( ( W prefix E ) ++ <" I "> ) ) = ( ( # ` ( W prefix E ) ) + 1 ) ) |
93 |
|
pfxlen |
|- ( ( W e. Word D /\ E e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( W prefix E ) ) = E ) |
94 |
18 42 93
|
syl2anc |
|- ( ph -> ( # ` ( W prefix E ) ) = E ) |
95 |
94
|
oveq1d |
|- ( ph -> ( ( # ` ( W prefix E ) ) + 1 ) = ( E + 1 ) ) |
96 |
92 95
|
eqtrd |
|- ( ph -> ( # ` ( ( W prefix E ) ++ <" I "> ) ) = ( E + 1 ) ) |
97 |
|
nn0fz0 |
|- ( ( # ` W ) e. NN0 <-> ( # ` W ) e. ( 0 ... ( # ` W ) ) ) |
98 |
75 97
|
sylib |
|- ( ph -> ( # ` W ) e. ( 0 ... ( # ` W ) ) ) |
99 |
|
swrdlen |
|- ( ( W e. Word D /\ E e. ( 0 ... ( # ` W ) ) /\ ( # ` W ) e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( W substr <. E , ( # ` W ) >. ) ) = ( ( # ` W ) - E ) ) |
100 |
18 42 98 99
|
syl3anc |
|- ( ph -> ( # ` ( W substr <. E , ( # ` W ) >. ) ) = ( ( # ` W ) - E ) ) |
101 |
96 100
|
oveq12d |
|- ( ph -> ( ( # ` ( ( W prefix E ) ++ <" I "> ) ) + ( # ` ( W substr <. E , ( # ` W ) >. ) ) ) = ( ( E + 1 ) + ( ( # ` W ) - E ) ) ) |
102 |
82 90 101
|
3eqtrd |
|- ( ph -> ( # ` U ) = ( ( E + 1 ) + ( ( # ` W ) - E ) ) ) |
103 |
43
|
nn0zd |
|- ( ph -> E e. ZZ ) |
104 |
103
|
peano2zd |
|- ( ph -> ( E + 1 ) e. ZZ ) |
105 |
104
|
zcnd |
|- ( ph -> ( E + 1 ) e. CC ) |
106 |
105 76 64
|
addsubassd |
|- ( ph -> ( ( ( E + 1 ) + ( # ` W ) ) - E ) = ( ( E + 1 ) + ( ( # ` W ) - E ) ) ) |
107 |
64 65 76
|
addassd |
|- ( ph -> ( ( E + 1 ) + ( # ` W ) ) = ( E + ( 1 + ( # ` W ) ) ) ) |
108 |
107
|
oveq1d |
|- ( ph -> ( ( ( E + 1 ) + ( # ` W ) ) - E ) = ( ( E + ( 1 + ( # ` W ) ) ) - E ) ) |
109 |
102 106 108
|
3eqtr2d |
|- ( ph -> ( # ` U ) = ( ( E + ( 1 + ( # ` W ) ) ) - E ) ) |
110 |
65 76
|
addcld |
|- ( ph -> ( 1 + ( # ` W ) ) e. CC ) |
111 |
64 110
|
pncan2d |
|- ( ph -> ( ( E + ( 1 + ( # ` W ) ) ) - E ) = ( 1 + ( # ` W ) ) ) |
112 |
65 76
|
addcomd |
|- ( ph -> ( 1 + ( # ` W ) ) = ( ( # ` W ) + 1 ) ) |
113 |
109 111 112
|
3eqtrd |
|- ( ph -> ( # ` U ) = ( ( # ` W ) + 1 ) ) |
114 |
76 65 113
|
mvrraddd |
|- ( ph -> ( ( # ` U ) - 1 ) = ( # ` W ) ) |
115 |
114
|
oveq2d |
|- ( ph -> ( E ..^ ( ( # ` U ) - 1 ) ) = ( E ..^ ( # ` W ) ) ) |
116 |
11 115
|
eleqtrd |
|- ( ph -> ( `' U ` K ) e. ( E ..^ ( # ` W ) ) ) |
117 |
|
fzosubel |
|- ( ( ( `' U ` K ) e. ( E ..^ ( # ` W ) ) /\ E e. ZZ ) -> ( ( `' U ` K ) - E ) e. ( ( E - E ) ..^ ( ( # ` W ) - E ) ) ) |
118 |
116 103 117
|
syl2anc |
|- ( ph -> ( ( `' U ` K ) - E ) e. ( ( E - E ) ..^ ( ( # ` W ) - E ) ) ) |
119 |
64
|
subidd |
|- ( ph -> ( E - E ) = 0 ) |
120 |
119
|
oveq1d |
|- ( ph -> ( ( E - E ) ..^ ( ( # ` W ) - E ) ) = ( 0 ..^ ( ( # ` W ) - E ) ) ) |
121 |
118 120
|
eleqtrd |
|- ( ph -> ( ( `' U ` K ) - E ) e. ( 0 ..^ ( ( # ` W ) - E ) ) ) |
122 |
65 64
|
addcomd |
|- ( ph -> ( 1 + E ) = ( E + 1 ) ) |
123 |
|
s1len |
|- ( # ` <" I "> ) = 1 |
124 |
123
|
oveq2i |
|- ( E + ( # ` <" I "> ) ) = ( E + 1 ) |
125 |
122 124
|
eqtr4di |
|- ( ph -> ( 1 + E ) = ( E + ( # ` <" I "> ) ) ) |
126 |
18 73 42 20 121 125
|
splfv3 |
|- ( ph -> ( ( W splice <. E , E , <" I "> >. ) ` ( ( ( `' U ` K ) - E ) + ( 1 + E ) ) ) = ( W ` ( ( ( `' U ` K ) - E ) + E ) ) ) |
127 |
114
|
oveq1d |
|- ( ph -> ( ( ( # ` U ) - 1 ) - 1 ) = ( ( # ` W ) - 1 ) ) |
128 |
127
|
oveq2d |
|- ( ph -> ( E ..^ ( ( ( # ` U ) - 1 ) - 1 ) ) = ( E ..^ ( ( # ` W ) - 1 ) ) ) |
129 |
|
fzoss1 |
|- ( E e. ( ZZ>= ` 0 ) -> ( E ..^ ( ( # ` W ) - 1 ) ) C_ ( 0 ..^ ( ( # ` W ) - 1 ) ) ) |
130 |
45 129
|
syl |
|- ( ph -> ( E ..^ ( ( # ` W ) - 1 ) ) C_ ( 0 ..^ ( ( # ` W ) - 1 ) ) ) |
131 |
128 130
|
eqsstrd |
|- ( ph -> ( E ..^ ( ( ( # ` U ) - 1 ) - 1 ) ) C_ ( 0 ..^ ( ( # ` W ) - 1 ) ) ) |
132 |
|
f1ocnvdm |
|- ( ( U : dom U -1-1-onto-> ran U /\ K e. ran U ) -> ( `' U ` K ) e. dom U ) |
133 |
51 55 132
|
syl2an2r |
|- ( ( ph /\ K e. ran W ) -> ( `' U ` K ) e. dom U ) |
134 |
9 133
|
mpdan |
|- ( ph -> ( `' U ` K ) e. dom U ) |
135 |
75
|
nn0zd |
|- ( ph -> ( # ` W ) e. ZZ ) |
136 |
135
|
peano2zd |
|- ( ph -> ( ( # ` W ) + 1 ) e. ZZ ) |
137 |
|
elfzonn0 |
|- ( ( `' W ` J ) e. ( 0 ..^ ( # ` W ) ) -> ( `' W ` J ) e. NN0 ) |
138 |
|
nn0p1nn |
|- ( ( `' W ` J ) e. NN0 -> ( ( `' W ` J ) + 1 ) e. NN ) |
139 |
39 137 138
|
3syl |
|- ( ph -> ( ( `' W ` J ) + 1 ) e. NN ) |
140 |
7 139
|
eqeltrid |
|- ( ph -> E e. NN ) |
141 |
140
|
nnred |
|- ( ph -> E e. RR ) |
142 |
135
|
zred |
|- ( ph -> ( # ` W ) e. RR ) |
143 |
|
1red |
|- ( ph -> 1 e. RR ) |
144 |
|
elfzle2 |
|- ( E e. ( 0 ... ( # ` W ) ) -> E <_ ( # ` W ) ) |
145 |
42 144
|
syl |
|- ( ph -> E <_ ( # ` W ) ) |
146 |
141 142 143 145
|
leadd1dd |
|- ( ph -> ( E + 1 ) <_ ( ( # ` W ) + 1 ) ) |
147 |
|
eluz2 |
|- ( ( ( # ` W ) + 1 ) e. ( ZZ>= ` ( E + 1 ) ) <-> ( ( E + 1 ) e. ZZ /\ ( ( # ` W ) + 1 ) e. ZZ /\ ( E + 1 ) <_ ( ( # ` W ) + 1 ) ) ) |
148 |
104 136 146 147
|
syl3anbrc |
|- ( ph -> ( ( # ` W ) + 1 ) e. ( ZZ>= ` ( E + 1 ) ) ) |
149 |
|
fzoss2 |
|- ( ( ( # ` W ) + 1 ) e. ( ZZ>= ` ( E + 1 ) ) -> ( 0 ..^ ( E + 1 ) ) C_ ( 0 ..^ ( ( # ` W ) + 1 ) ) ) |
150 |
148 149
|
syl |
|- ( ph -> ( 0 ..^ ( E + 1 ) ) C_ ( 0 ..^ ( ( # ` W ) + 1 ) ) ) |
151 |
|
fzonn0p1 |
|- ( E e. NN0 -> E e. ( 0 ..^ ( E + 1 ) ) ) |
152 |
43 151
|
syl |
|- ( ph -> E e. ( 0 ..^ ( E + 1 ) ) ) |
153 |
150 152
|
sseldd |
|- ( ph -> E e. ( 0 ..^ ( ( # ` W ) + 1 ) ) ) |
154 |
113
|
oveq2d |
|- ( ph -> ( 0 ..^ ( # ` U ) ) = ( 0 ..^ ( ( # ` W ) + 1 ) ) ) |
155 |
153 154
|
eleqtrrd |
|- ( ph -> E e. ( 0 ..^ ( # ` U ) ) ) |
156 |
|
wrddm |
|- ( U e. Word D -> dom U = ( 0 ..^ ( # ` U ) ) ) |
157 |
23 156
|
syl |
|- ( ph -> dom U = ( 0 ..^ ( # ` U ) ) ) |
158 |
155 157
|
eleqtrrd |
|- ( ph -> E e. dom U ) |
159 |
1 2 3 4 5 6 7 8
|
cycpmco2lem2 |
|- ( ph -> ( U ` E ) = I ) |
160 |
10 58 159
|
3netr4d |
|- ( ph -> ( U ` ( `' U ` K ) ) =/= ( U ` E ) ) |
161 |
|
f1fveq |
|- ( ( U : dom U -1-1-> D /\ ( ( `' U ` K ) e. dom U /\ E e. dom U ) ) -> ( ( U ` ( `' U ` K ) ) = ( U ` E ) <-> ( `' U ` K ) = E ) ) |
162 |
161
|
necon3bid |
|- ( ( U : dom U -1-1-> D /\ ( ( `' U ` K ) e. dom U /\ E e. dom U ) ) -> ( ( U ` ( `' U ` K ) ) =/= ( U ` E ) <-> ( `' U ` K ) =/= E ) ) |
163 |
162
|
biimp3a |
|- ( ( U : dom U -1-1-> D /\ ( ( `' U ` K ) e. dom U /\ E e. dom U ) /\ ( U ` ( `' U ` K ) ) =/= ( U ` E ) ) -> ( `' U ` K ) =/= E ) |
164 |
24 134 158 160 163
|
syl121anc |
|- ( ph -> ( `' U ` K ) =/= E ) |
165 |
|
fzom1ne1 |
|- ( ( ( `' U ` K ) e. ( E ..^ ( ( # ` U ) - 1 ) ) /\ ( `' U ` K ) =/= E ) -> ( ( `' U ` K ) - 1 ) e. ( E ..^ ( ( ( # ` U ) - 1 ) - 1 ) ) ) |
166 |
11 164 165
|
syl2anc |
|- ( ph -> ( ( `' U ` K ) - 1 ) e. ( E ..^ ( ( ( # ` U ) - 1 ) - 1 ) ) ) |
167 |
131 166
|
sseldd |
|- ( ph -> ( ( `' U ` K ) - 1 ) e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) |
168 |
1 3 18 32 167
|
cycpmfv1 |
|- ( ph -> ( ( M ` W ) ` ( W ` ( ( `' U ` K ) - 1 ) ) ) = ( W ` ( ( ( `' U ` K ) - 1 ) + 1 ) ) ) |
169 |
63 65 64
|
subsub4d |
|- ( ph -> ( ( ( `' U ` K ) - 1 ) - E ) = ( ( `' U ` K ) - ( 1 + E ) ) ) |
170 |
169
|
oveq1d |
|- ( ph -> ( ( ( ( `' U ` K ) - 1 ) - E ) + ( 1 + E ) ) = ( ( ( `' U ` K ) - ( 1 + E ) ) + ( 1 + E ) ) ) |
171 |
65 64
|
addcld |
|- ( ph -> ( 1 + E ) e. CC ) |
172 |
63 171
|
npcand |
|- ( ph -> ( ( ( `' U ` K ) - ( 1 + E ) ) + ( 1 + E ) ) = ( `' U ` K ) ) |
173 |
170 172
|
eqtr2d |
|- ( ph -> ( `' U ` K ) = ( ( ( ( `' U ` K ) - 1 ) - E ) + ( 1 + E ) ) ) |
174 |
60 173
|
fveq12d |
|- ( ph -> ( U ` ( `' U ` K ) ) = ( ( W splice <. E , E , <" I "> >. ) ` ( ( ( ( `' U ` K ) - 1 ) - E ) + ( 1 + E ) ) ) ) |
175 |
64 76
|
pncan3d |
|- ( ph -> ( E + ( ( # ` W ) - E ) ) = ( # ` W ) ) |
176 |
114 135
|
eqeltrd |
|- ( ph -> ( ( # ` U ) - 1 ) e. ZZ ) |
177 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
178 |
176 177
|
zsubcld |
|- ( ph -> ( ( ( # ` U ) - 1 ) - 1 ) e. ZZ ) |
179 |
178
|
zred |
|- ( ph -> ( ( ( # ` U ) - 1 ) - 1 ) e. RR ) |
180 |
114 142
|
eqeltrd |
|- ( ph -> ( ( # ` U ) - 1 ) e. RR ) |
181 |
180
|
ltm1d |
|- ( ph -> ( ( ( # ` U ) - 1 ) - 1 ) < ( ( # ` U ) - 1 ) ) |
182 |
181 114
|
breqtrd |
|- ( ph -> ( ( ( # ` U ) - 1 ) - 1 ) < ( # ` W ) ) |
183 |
179 142 182
|
ltled |
|- ( ph -> ( ( ( # ` U ) - 1 ) - 1 ) <_ ( # ` W ) ) |
184 |
|
eluz1 |
|- ( ( ( ( # ` U ) - 1 ) - 1 ) e. ZZ -> ( ( # ` W ) e. ( ZZ>= ` ( ( ( # ` U ) - 1 ) - 1 ) ) <-> ( ( # ` W ) e. ZZ /\ ( ( ( # ` U ) - 1 ) - 1 ) <_ ( # ` W ) ) ) ) |
185 |
184
|
biimpar |
|- ( ( ( ( ( # ` U ) - 1 ) - 1 ) e. ZZ /\ ( ( # ` W ) e. ZZ /\ ( ( ( # ` U ) - 1 ) - 1 ) <_ ( # ` W ) ) ) -> ( # ` W ) e. ( ZZ>= ` ( ( ( # ` U ) - 1 ) - 1 ) ) ) |
186 |
178 135 183 185
|
syl12anc |
|- ( ph -> ( # ` W ) e. ( ZZ>= ` ( ( ( # ` U ) - 1 ) - 1 ) ) ) |
187 |
175 186
|
eqeltrd |
|- ( ph -> ( E + ( ( # ` W ) - E ) ) e. ( ZZ>= ` ( ( ( # ` U ) - 1 ) - 1 ) ) ) |
188 |
|
fzoss2 |
|- ( ( E + ( ( # ` W ) - E ) ) e. ( ZZ>= ` ( ( ( # ` U ) - 1 ) - 1 ) ) -> ( E ..^ ( ( ( # ` U ) - 1 ) - 1 ) ) C_ ( E ..^ ( E + ( ( # ` W ) - E ) ) ) ) |
189 |
187 188
|
syl |
|- ( ph -> ( E ..^ ( ( ( # ` U ) - 1 ) - 1 ) ) C_ ( E ..^ ( E + ( ( # ` W ) - E ) ) ) ) |
190 |
189 166
|
sseldd |
|- ( ph -> ( ( `' U ` K ) - 1 ) e. ( E ..^ ( E + ( ( # ` W ) - E ) ) ) ) |
191 |
135 103
|
zsubcld |
|- ( ph -> ( ( # ` W ) - E ) e. ZZ ) |
192 |
|
fzosubel3 |
|- ( ( ( ( `' U ` K ) - 1 ) e. ( E ..^ ( E + ( ( # ` W ) - E ) ) ) /\ ( ( # ` W ) - E ) e. ZZ ) -> ( ( ( `' U ` K ) - 1 ) - E ) e. ( 0 ..^ ( ( # ` W ) - E ) ) ) |
193 |
190 191 192
|
syl2anc |
|- ( ph -> ( ( ( `' U ` K ) - 1 ) - E ) e. ( 0 ..^ ( ( # ` W ) - E ) ) ) |
194 |
18 73 42 20 193 125
|
splfv3 |
|- ( ph -> ( ( W splice <. E , E , <" I "> >. ) ` ( ( ( ( `' U ` K ) - 1 ) - E ) + ( 1 + E ) ) ) = ( W ` ( ( ( ( `' U ` K ) - 1 ) - E ) + E ) ) ) |
195 |
63 65
|
subcld |
|- ( ph -> ( ( `' U ` K ) - 1 ) e. CC ) |
196 |
195 64
|
npcand |
|- ( ph -> ( ( ( ( `' U ` K ) - 1 ) - E ) + E ) = ( ( `' U ` K ) - 1 ) ) |
197 |
196
|
fveq2d |
|- ( ph -> ( W ` ( ( ( ( `' U ` K ) - 1 ) - E ) + E ) ) = ( W ` ( ( `' U ` K ) - 1 ) ) ) |
198 |
174 194 197
|
3eqtrd |
|- ( ph -> ( U ` ( `' U ` K ) ) = ( W ` ( ( `' U ` K ) - 1 ) ) ) |
199 |
198 58
|
eqtr3d |
|- ( ph -> ( W ` ( ( `' U ` K ) - 1 ) ) = K ) |
200 |
199
|
fveq2d |
|- ( ph -> ( ( M ` W ) ` ( W ` ( ( `' U ` K ) - 1 ) ) ) = ( ( M ` W ) ` K ) ) |
201 |
63 65
|
npcand |
|- ( ph -> ( ( ( `' U ` K ) - 1 ) + 1 ) = ( `' U ` K ) ) |
202 |
201
|
fveq2d |
|- ( ph -> ( W ` ( ( ( `' U ` K ) - 1 ) + 1 ) ) = ( W ` ( `' U ` K ) ) ) |
203 |
168 200 202
|
3eqtr3d |
|- ( ph -> ( ( M ` W ) ` K ) = ( W ` ( `' U ` K ) ) ) |
204 |
71 126 203
|
3eqtr4rd |
|- ( ph -> ( ( M ` W ) ` K ) = ( ( W splice <. E , E , <" I "> >. ) ` ( ( ( `' U ` K ) - E ) + ( 1 + E ) ) ) ) |
205 |
69 204
|
eqtr4d |
|- ( ph -> ( ( M ` U ) ` K ) = ( ( M ` W ) ` K ) ) |