| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycpmco2.c |  |-  M = ( toCyc ` D ) | 
						
							| 2 |  | cycpmco2.s |  |-  S = ( SymGrp ` D ) | 
						
							| 3 |  | cycpmco2.d |  |-  ( ph -> D e. V ) | 
						
							| 4 |  | cycpmco2.w |  |-  ( ph -> W e. dom M ) | 
						
							| 5 |  | cycpmco2.i |  |-  ( ph -> I e. ( D \ ran W ) ) | 
						
							| 6 |  | cycpmco2.j |  |-  ( ph -> J e. ran W ) | 
						
							| 7 |  | cycpmco2.e |  |-  E = ( ( `' W ` J ) + 1 ) | 
						
							| 8 |  | cycpmco2.1 |  |-  U = ( W splice <. E , E , <" I "> >. ) | 
						
							| 9 |  | cycpmco2lem.1 |  |-  ( ph -> K e. ran W ) | 
						
							| 10 |  | cycpmco2lem6.2 |  |-  ( ph -> K =/= I ) | 
						
							| 11 |  | cycpmco2lem6.1 |  |-  ( ph -> ( `' U ` K ) e. ( E ..^ ( ( # ` U ) - 1 ) ) ) | 
						
							| 12 |  | ssrab2 |  |-  { w e. Word D | w : dom w -1-1-> D } C_ Word D | 
						
							| 13 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 14 | 1 2 13 | tocycf |  |-  ( D e. V -> M : { w e. Word D | w : dom w -1-1-> D } --> ( Base ` S ) ) | 
						
							| 15 | 3 14 | syl |  |-  ( ph -> M : { w e. Word D | w : dom w -1-1-> D } --> ( Base ` S ) ) | 
						
							| 16 | 15 | fdmd |  |-  ( ph -> dom M = { w e. Word D | w : dom w -1-1-> D } ) | 
						
							| 17 | 4 16 | eleqtrd |  |-  ( ph -> W e. { w e. Word D | w : dom w -1-1-> D } ) | 
						
							| 18 | 12 17 | sselid |  |-  ( ph -> W e. Word D ) | 
						
							| 19 | 5 | eldifad |  |-  ( ph -> I e. D ) | 
						
							| 20 | 19 | s1cld |  |-  ( ph -> <" I "> e. Word D ) | 
						
							| 21 |  | splcl |  |-  ( ( W e. Word D /\ <" I "> e. Word D ) -> ( W splice <. E , E , <" I "> >. ) e. Word D ) | 
						
							| 22 | 18 20 21 | syl2anc |  |-  ( ph -> ( W splice <. E , E , <" I "> >. ) e. Word D ) | 
						
							| 23 | 8 22 | eqeltrid |  |-  ( ph -> U e. Word D ) | 
						
							| 24 | 1 2 3 4 5 6 7 8 | cycpmco2f1 |  |-  ( ph -> U : dom U -1-1-> D ) | 
						
							| 25 |  | fz0ssnn0 |  |-  ( 0 ... ( # ` W ) ) C_ NN0 | 
						
							| 26 |  | id |  |-  ( w = W -> w = W ) | 
						
							| 27 |  | dmeq |  |-  ( w = W -> dom w = dom W ) | 
						
							| 28 |  | eqidd |  |-  ( w = W -> D = D ) | 
						
							| 29 | 26 27 28 | f1eq123d |  |-  ( w = W -> ( w : dom w -1-1-> D <-> W : dom W -1-1-> D ) ) | 
						
							| 30 | 29 | elrab |  |-  ( W e. { w e. Word D | w : dom w -1-1-> D } <-> ( W e. Word D /\ W : dom W -1-1-> D ) ) | 
						
							| 31 | 17 30 | sylib |  |-  ( ph -> ( W e. Word D /\ W : dom W -1-1-> D ) ) | 
						
							| 32 | 31 | simprd |  |-  ( ph -> W : dom W -1-1-> D ) | 
						
							| 33 |  | f1cnv |  |-  ( W : dom W -1-1-> D -> `' W : ran W -1-1-onto-> dom W ) | 
						
							| 34 |  | f1of |  |-  ( `' W : ran W -1-1-onto-> dom W -> `' W : ran W --> dom W ) | 
						
							| 35 | 32 33 34 | 3syl |  |-  ( ph -> `' W : ran W --> dom W ) | 
						
							| 36 | 35 6 | ffvelcdmd |  |-  ( ph -> ( `' W ` J ) e. dom W ) | 
						
							| 37 |  | wrddm |  |-  ( W e. Word D -> dom W = ( 0 ..^ ( # ` W ) ) ) | 
						
							| 38 | 18 37 | syl |  |-  ( ph -> dom W = ( 0 ..^ ( # ` W ) ) ) | 
						
							| 39 | 36 38 | eleqtrd |  |-  ( ph -> ( `' W ` J ) e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 40 |  | fzofzp1 |  |-  ( ( `' W ` J ) e. ( 0 ..^ ( # ` W ) ) -> ( ( `' W ` J ) + 1 ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 41 | 39 40 | syl |  |-  ( ph -> ( ( `' W ` J ) + 1 ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 42 | 7 41 | eqeltrid |  |-  ( ph -> E e. ( 0 ... ( # ` W ) ) ) | 
						
							| 43 | 25 42 | sselid |  |-  ( ph -> E e. NN0 ) | 
						
							| 44 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 45 | 43 44 | eleqtrdi |  |-  ( ph -> E e. ( ZZ>= ` 0 ) ) | 
						
							| 46 |  | fzoss1 |  |-  ( E e. ( ZZ>= ` 0 ) -> ( E ..^ ( ( # ` U ) - 1 ) ) C_ ( 0 ..^ ( ( # ` U ) - 1 ) ) ) | 
						
							| 47 | 45 46 | syl |  |-  ( ph -> ( E ..^ ( ( # ` U ) - 1 ) ) C_ ( 0 ..^ ( ( # ` U ) - 1 ) ) ) | 
						
							| 48 | 47 11 | sseldd |  |-  ( ph -> ( `' U ` K ) e. ( 0 ..^ ( ( # ` U ) - 1 ) ) ) | 
						
							| 49 | 1 3 23 24 48 | cycpmfv1 |  |-  ( ph -> ( ( M ` U ) ` ( U ` ( `' U ` K ) ) ) = ( U ` ( ( `' U ` K ) + 1 ) ) ) | 
						
							| 50 |  | f1f1orn |  |-  ( U : dom U -1-1-> D -> U : dom U -1-1-onto-> ran U ) | 
						
							| 51 | 24 50 | syl |  |-  ( ph -> U : dom U -1-1-onto-> ran U ) | 
						
							| 52 |  | ssun1 |  |-  ran W C_ ( ran W u. { I } ) | 
						
							| 53 | 1 2 3 4 5 6 7 8 | cycpmco2rn |  |-  ( ph -> ran U = ( ran W u. { I } ) ) | 
						
							| 54 | 52 53 | sseqtrrid |  |-  ( ph -> ran W C_ ran U ) | 
						
							| 55 | 54 | sselda |  |-  ( ( ph /\ K e. ran W ) -> K e. ran U ) | 
						
							| 56 |  | f1ocnvfv2 |  |-  ( ( U : dom U -1-1-onto-> ran U /\ K e. ran U ) -> ( U ` ( `' U ` K ) ) = K ) | 
						
							| 57 | 51 55 56 | syl2an2r |  |-  ( ( ph /\ K e. ran W ) -> ( U ` ( `' U ` K ) ) = K ) | 
						
							| 58 | 9 57 | mpdan |  |-  ( ph -> ( U ` ( `' U ` K ) ) = K ) | 
						
							| 59 | 58 | fveq2d |  |-  ( ph -> ( ( M ` U ) ` ( U ` ( `' U ` K ) ) ) = ( ( M ` U ) ` K ) ) | 
						
							| 60 | 8 | a1i |  |-  ( ph -> U = ( W splice <. E , E , <" I "> >. ) ) | 
						
							| 61 |  | fzossz |  |-  ( E ..^ ( ( # ` U ) - 1 ) ) C_ ZZ | 
						
							| 62 | 61 11 | sselid |  |-  ( ph -> ( `' U ` K ) e. ZZ ) | 
						
							| 63 | 62 | zcnd |  |-  ( ph -> ( `' U ` K ) e. CC ) | 
						
							| 64 | 43 | nn0cnd |  |-  ( ph -> E e. CC ) | 
						
							| 65 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 66 | 63 64 65 | nppcan3d |  |-  ( ph -> ( ( ( `' U ` K ) - E ) + ( 1 + E ) ) = ( ( `' U ` K ) + 1 ) ) | 
						
							| 67 | 66 | eqcomd |  |-  ( ph -> ( ( `' U ` K ) + 1 ) = ( ( ( `' U ` K ) - E ) + ( 1 + E ) ) ) | 
						
							| 68 | 60 67 | fveq12d |  |-  ( ph -> ( U ` ( ( `' U ` K ) + 1 ) ) = ( ( W splice <. E , E , <" I "> >. ) ` ( ( ( `' U ` K ) - E ) + ( 1 + E ) ) ) ) | 
						
							| 69 | 49 59 68 | 3eqtr3d |  |-  ( ph -> ( ( M ` U ) ` K ) = ( ( W splice <. E , E , <" I "> >. ) ` ( ( ( `' U ` K ) - E ) + ( 1 + E ) ) ) ) | 
						
							| 70 | 63 64 | npcand |  |-  ( ph -> ( ( ( `' U ` K ) - E ) + E ) = ( `' U ` K ) ) | 
						
							| 71 | 70 | fveq2d |  |-  ( ph -> ( W ` ( ( ( `' U ` K ) - E ) + E ) ) = ( W ` ( `' U ` K ) ) ) | 
						
							| 72 |  | nn0fz0 |  |-  ( E e. NN0 <-> E e. ( 0 ... E ) ) | 
						
							| 73 | 43 72 | sylib |  |-  ( ph -> E e. ( 0 ... E ) ) | 
						
							| 74 |  | lencl |  |-  ( W e. Word D -> ( # ` W ) e. NN0 ) | 
						
							| 75 | 18 74 | syl |  |-  ( ph -> ( # ` W ) e. NN0 ) | 
						
							| 76 | 75 | nn0cnd |  |-  ( ph -> ( # ` W ) e. CC ) | 
						
							| 77 |  | ovexd |  |-  ( ph -> ( ( `' W ` J ) + 1 ) e. _V ) | 
						
							| 78 | 7 77 | eqeltrid |  |-  ( ph -> E e. _V ) | 
						
							| 79 |  | splval |  |-  ( ( W e. dom M /\ ( E e. _V /\ E e. _V /\ <" I "> e. Word D ) ) -> ( W splice <. E , E , <" I "> >. ) = ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) | 
						
							| 80 | 4 78 78 20 79 | syl13anc |  |-  ( ph -> ( W splice <. E , E , <" I "> >. ) = ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) | 
						
							| 81 | 8 80 | eqtrid |  |-  ( ph -> U = ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) | 
						
							| 82 | 81 | fveq2d |  |-  ( ph -> ( # ` U ) = ( # ` ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) ) | 
						
							| 83 |  | pfxcl |  |-  ( W e. Word D -> ( W prefix E ) e. Word D ) | 
						
							| 84 | 18 83 | syl |  |-  ( ph -> ( W prefix E ) e. Word D ) | 
						
							| 85 |  | ccatcl |  |-  ( ( ( W prefix E ) e. Word D /\ <" I "> e. Word D ) -> ( ( W prefix E ) ++ <" I "> ) e. Word D ) | 
						
							| 86 | 84 20 85 | syl2anc |  |-  ( ph -> ( ( W prefix E ) ++ <" I "> ) e. Word D ) | 
						
							| 87 |  | swrdcl |  |-  ( W e. Word D -> ( W substr <. E , ( # ` W ) >. ) e. Word D ) | 
						
							| 88 | 18 87 | syl |  |-  ( ph -> ( W substr <. E , ( # ` W ) >. ) e. Word D ) | 
						
							| 89 |  | ccatlen |  |-  ( ( ( ( W prefix E ) ++ <" I "> ) e. Word D /\ ( W substr <. E , ( # ` W ) >. ) e. Word D ) -> ( # ` ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) = ( ( # ` ( ( W prefix E ) ++ <" I "> ) ) + ( # ` ( W substr <. E , ( # ` W ) >. ) ) ) ) | 
						
							| 90 | 86 88 89 | syl2anc |  |-  ( ph -> ( # ` ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) = ( ( # ` ( ( W prefix E ) ++ <" I "> ) ) + ( # ` ( W substr <. E , ( # ` W ) >. ) ) ) ) | 
						
							| 91 |  | ccatws1len |  |-  ( ( W prefix E ) e. Word D -> ( # ` ( ( W prefix E ) ++ <" I "> ) ) = ( ( # ` ( W prefix E ) ) + 1 ) ) | 
						
							| 92 | 18 83 91 | 3syl |  |-  ( ph -> ( # ` ( ( W prefix E ) ++ <" I "> ) ) = ( ( # ` ( W prefix E ) ) + 1 ) ) | 
						
							| 93 |  | pfxlen |  |-  ( ( W e. Word D /\ E e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( W prefix E ) ) = E ) | 
						
							| 94 | 18 42 93 | syl2anc |  |-  ( ph -> ( # ` ( W prefix E ) ) = E ) | 
						
							| 95 | 94 | oveq1d |  |-  ( ph -> ( ( # ` ( W prefix E ) ) + 1 ) = ( E + 1 ) ) | 
						
							| 96 | 92 95 | eqtrd |  |-  ( ph -> ( # ` ( ( W prefix E ) ++ <" I "> ) ) = ( E + 1 ) ) | 
						
							| 97 |  | nn0fz0 |  |-  ( ( # ` W ) e. NN0 <-> ( # ` W ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 98 | 75 97 | sylib |  |-  ( ph -> ( # ` W ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 99 |  | swrdlen |  |-  ( ( W e. Word D /\ E e. ( 0 ... ( # ` W ) ) /\ ( # ` W ) e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( W substr <. E , ( # ` W ) >. ) ) = ( ( # ` W ) - E ) ) | 
						
							| 100 | 18 42 98 99 | syl3anc |  |-  ( ph -> ( # ` ( W substr <. E , ( # ` W ) >. ) ) = ( ( # ` W ) - E ) ) | 
						
							| 101 | 96 100 | oveq12d |  |-  ( ph -> ( ( # ` ( ( W prefix E ) ++ <" I "> ) ) + ( # ` ( W substr <. E , ( # ` W ) >. ) ) ) = ( ( E + 1 ) + ( ( # ` W ) - E ) ) ) | 
						
							| 102 | 82 90 101 | 3eqtrd |  |-  ( ph -> ( # ` U ) = ( ( E + 1 ) + ( ( # ` W ) - E ) ) ) | 
						
							| 103 | 43 | nn0zd |  |-  ( ph -> E e. ZZ ) | 
						
							| 104 | 103 | peano2zd |  |-  ( ph -> ( E + 1 ) e. ZZ ) | 
						
							| 105 | 104 | zcnd |  |-  ( ph -> ( E + 1 ) e. CC ) | 
						
							| 106 | 105 76 64 | addsubassd |  |-  ( ph -> ( ( ( E + 1 ) + ( # ` W ) ) - E ) = ( ( E + 1 ) + ( ( # ` W ) - E ) ) ) | 
						
							| 107 | 64 65 76 | addassd |  |-  ( ph -> ( ( E + 1 ) + ( # ` W ) ) = ( E + ( 1 + ( # ` W ) ) ) ) | 
						
							| 108 | 107 | oveq1d |  |-  ( ph -> ( ( ( E + 1 ) + ( # ` W ) ) - E ) = ( ( E + ( 1 + ( # ` W ) ) ) - E ) ) | 
						
							| 109 | 102 106 108 | 3eqtr2d |  |-  ( ph -> ( # ` U ) = ( ( E + ( 1 + ( # ` W ) ) ) - E ) ) | 
						
							| 110 | 65 76 | addcld |  |-  ( ph -> ( 1 + ( # ` W ) ) e. CC ) | 
						
							| 111 | 64 110 | pncan2d |  |-  ( ph -> ( ( E + ( 1 + ( # ` W ) ) ) - E ) = ( 1 + ( # ` W ) ) ) | 
						
							| 112 | 65 76 | addcomd |  |-  ( ph -> ( 1 + ( # ` W ) ) = ( ( # ` W ) + 1 ) ) | 
						
							| 113 | 109 111 112 | 3eqtrd |  |-  ( ph -> ( # ` U ) = ( ( # ` W ) + 1 ) ) | 
						
							| 114 | 76 65 113 | mvrraddd |  |-  ( ph -> ( ( # ` U ) - 1 ) = ( # ` W ) ) | 
						
							| 115 | 114 | oveq2d |  |-  ( ph -> ( E ..^ ( ( # ` U ) - 1 ) ) = ( E ..^ ( # ` W ) ) ) | 
						
							| 116 | 11 115 | eleqtrd |  |-  ( ph -> ( `' U ` K ) e. ( E ..^ ( # ` W ) ) ) | 
						
							| 117 |  | fzosubel |  |-  ( ( ( `' U ` K ) e. ( E ..^ ( # ` W ) ) /\ E e. ZZ ) -> ( ( `' U ` K ) - E ) e. ( ( E - E ) ..^ ( ( # ` W ) - E ) ) ) | 
						
							| 118 | 116 103 117 | syl2anc |  |-  ( ph -> ( ( `' U ` K ) - E ) e. ( ( E - E ) ..^ ( ( # ` W ) - E ) ) ) | 
						
							| 119 | 64 | subidd |  |-  ( ph -> ( E - E ) = 0 ) | 
						
							| 120 | 119 | oveq1d |  |-  ( ph -> ( ( E - E ) ..^ ( ( # ` W ) - E ) ) = ( 0 ..^ ( ( # ` W ) - E ) ) ) | 
						
							| 121 | 118 120 | eleqtrd |  |-  ( ph -> ( ( `' U ` K ) - E ) e. ( 0 ..^ ( ( # ` W ) - E ) ) ) | 
						
							| 122 | 65 64 | addcomd |  |-  ( ph -> ( 1 + E ) = ( E + 1 ) ) | 
						
							| 123 |  | s1len |  |-  ( # ` <" I "> ) = 1 | 
						
							| 124 | 123 | oveq2i |  |-  ( E + ( # ` <" I "> ) ) = ( E + 1 ) | 
						
							| 125 | 122 124 | eqtr4di |  |-  ( ph -> ( 1 + E ) = ( E + ( # ` <" I "> ) ) ) | 
						
							| 126 | 18 73 42 20 121 125 | splfv3 |  |-  ( ph -> ( ( W splice <. E , E , <" I "> >. ) ` ( ( ( `' U ` K ) - E ) + ( 1 + E ) ) ) = ( W ` ( ( ( `' U ` K ) - E ) + E ) ) ) | 
						
							| 127 | 114 | oveq1d |  |-  ( ph -> ( ( ( # ` U ) - 1 ) - 1 ) = ( ( # ` W ) - 1 ) ) | 
						
							| 128 | 127 | oveq2d |  |-  ( ph -> ( E ..^ ( ( ( # ` U ) - 1 ) - 1 ) ) = ( E ..^ ( ( # ` W ) - 1 ) ) ) | 
						
							| 129 |  | fzoss1 |  |-  ( E e. ( ZZ>= ` 0 ) -> ( E ..^ ( ( # ` W ) - 1 ) ) C_ ( 0 ..^ ( ( # ` W ) - 1 ) ) ) | 
						
							| 130 | 45 129 | syl |  |-  ( ph -> ( E ..^ ( ( # ` W ) - 1 ) ) C_ ( 0 ..^ ( ( # ` W ) - 1 ) ) ) | 
						
							| 131 | 128 130 | eqsstrd |  |-  ( ph -> ( E ..^ ( ( ( # ` U ) - 1 ) - 1 ) ) C_ ( 0 ..^ ( ( # ` W ) - 1 ) ) ) | 
						
							| 132 |  | f1ocnvdm |  |-  ( ( U : dom U -1-1-onto-> ran U /\ K e. ran U ) -> ( `' U ` K ) e. dom U ) | 
						
							| 133 | 51 55 132 | syl2an2r |  |-  ( ( ph /\ K e. ran W ) -> ( `' U ` K ) e. dom U ) | 
						
							| 134 | 9 133 | mpdan |  |-  ( ph -> ( `' U ` K ) e. dom U ) | 
						
							| 135 | 75 | nn0zd |  |-  ( ph -> ( # ` W ) e. ZZ ) | 
						
							| 136 | 135 | peano2zd |  |-  ( ph -> ( ( # ` W ) + 1 ) e. ZZ ) | 
						
							| 137 |  | elfzonn0 |  |-  ( ( `' W ` J ) e. ( 0 ..^ ( # ` W ) ) -> ( `' W ` J ) e. NN0 ) | 
						
							| 138 |  | nn0p1nn |  |-  ( ( `' W ` J ) e. NN0 -> ( ( `' W ` J ) + 1 ) e. NN ) | 
						
							| 139 | 39 137 138 | 3syl |  |-  ( ph -> ( ( `' W ` J ) + 1 ) e. NN ) | 
						
							| 140 | 7 139 | eqeltrid |  |-  ( ph -> E e. NN ) | 
						
							| 141 | 140 | nnred |  |-  ( ph -> E e. RR ) | 
						
							| 142 | 135 | zred |  |-  ( ph -> ( # ` W ) e. RR ) | 
						
							| 143 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 144 |  | elfzle2 |  |-  ( E e. ( 0 ... ( # ` W ) ) -> E <_ ( # ` W ) ) | 
						
							| 145 | 42 144 | syl |  |-  ( ph -> E <_ ( # ` W ) ) | 
						
							| 146 | 141 142 143 145 | leadd1dd |  |-  ( ph -> ( E + 1 ) <_ ( ( # ` W ) + 1 ) ) | 
						
							| 147 |  | eluz2 |  |-  ( ( ( # ` W ) + 1 ) e. ( ZZ>= ` ( E + 1 ) ) <-> ( ( E + 1 ) e. ZZ /\ ( ( # ` W ) + 1 ) e. ZZ /\ ( E + 1 ) <_ ( ( # ` W ) + 1 ) ) ) | 
						
							| 148 | 104 136 146 147 | syl3anbrc |  |-  ( ph -> ( ( # ` W ) + 1 ) e. ( ZZ>= ` ( E + 1 ) ) ) | 
						
							| 149 |  | fzoss2 |  |-  ( ( ( # ` W ) + 1 ) e. ( ZZ>= ` ( E + 1 ) ) -> ( 0 ..^ ( E + 1 ) ) C_ ( 0 ..^ ( ( # ` W ) + 1 ) ) ) | 
						
							| 150 | 148 149 | syl |  |-  ( ph -> ( 0 ..^ ( E + 1 ) ) C_ ( 0 ..^ ( ( # ` W ) + 1 ) ) ) | 
						
							| 151 |  | fzonn0p1 |  |-  ( E e. NN0 -> E e. ( 0 ..^ ( E + 1 ) ) ) | 
						
							| 152 | 43 151 | syl |  |-  ( ph -> E e. ( 0 ..^ ( E + 1 ) ) ) | 
						
							| 153 | 150 152 | sseldd |  |-  ( ph -> E e. ( 0 ..^ ( ( # ` W ) + 1 ) ) ) | 
						
							| 154 | 113 | oveq2d |  |-  ( ph -> ( 0 ..^ ( # ` U ) ) = ( 0 ..^ ( ( # ` W ) + 1 ) ) ) | 
						
							| 155 | 153 154 | eleqtrrd |  |-  ( ph -> E e. ( 0 ..^ ( # ` U ) ) ) | 
						
							| 156 |  | wrddm |  |-  ( U e. Word D -> dom U = ( 0 ..^ ( # ` U ) ) ) | 
						
							| 157 | 23 156 | syl |  |-  ( ph -> dom U = ( 0 ..^ ( # ` U ) ) ) | 
						
							| 158 | 155 157 | eleqtrrd |  |-  ( ph -> E e. dom U ) | 
						
							| 159 | 1 2 3 4 5 6 7 8 | cycpmco2lem2 |  |-  ( ph -> ( U ` E ) = I ) | 
						
							| 160 | 10 58 159 | 3netr4d |  |-  ( ph -> ( U ` ( `' U ` K ) ) =/= ( U ` E ) ) | 
						
							| 161 |  | f1fveq |  |-  ( ( U : dom U -1-1-> D /\ ( ( `' U ` K ) e. dom U /\ E e. dom U ) ) -> ( ( U ` ( `' U ` K ) ) = ( U ` E ) <-> ( `' U ` K ) = E ) ) | 
						
							| 162 | 161 | necon3bid |  |-  ( ( U : dom U -1-1-> D /\ ( ( `' U ` K ) e. dom U /\ E e. dom U ) ) -> ( ( U ` ( `' U ` K ) ) =/= ( U ` E ) <-> ( `' U ` K ) =/= E ) ) | 
						
							| 163 | 162 | biimp3a |  |-  ( ( U : dom U -1-1-> D /\ ( ( `' U ` K ) e. dom U /\ E e. dom U ) /\ ( U ` ( `' U ` K ) ) =/= ( U ` E ) ) -> ( `' U ` K ) =/= E ) | 
						
							| 164 | 24 134 158 160 163 | syl121anc |  |-  ( ph -> ( `' U ` K ) =/= E ) | 
						
							| 165 |  | fzom1ne1 |  |-  ( ( ( `' U ` K ) e. ( E ..^ ( ( # ` U ) - 1 ) ) /\ ( `' U ` K ) =/= E ) -> ( ( `' U ` K ) - 1 ) e. ( E ..^ ( ( ( # ` U ) - 1 ) - 1 ) ) ) | 
						
							| 166 | 11 164 165 | syl2anc |  |-  ( ph -> ( ( `' U ` K ) - 1 ) e. ( E ..^ ( ( ( # ` U ) - 1 ) - 1 ) ) ) | 
						
							| 167 | 131 166 | sseldd |  |-  ( ph -> ( ( `' U ` K ) - 1 ) e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) | 
						
							| 168 | 1 3 18 32 167 | cycpmfv1 |  |-  ( ph -> ( ( M ` W ) ` ( W ` ( ( `' U ` K ) - 1 ) ) ) = ( W ` ( ( ( `' U ` K ) - 1 ) + 1 ) ) ) | 
						
							| 169 | 63 65 64 | subsub4d |  |-  ( ph -> ( ( ( `' U ` K ) - 1 ) - E ) = ( ( `' U ` K ) - ( 1 + E ) ) ) | 
						
							| 170 | 169 | oveq1d |  |-  ( ph -> ( ( ( ( `' U ` K ) - 1 ) - E ) + ( 1 + E ) ) = ( ( ( `' U ` K ) - ( 1 + E ) ) + ( 1 + E ) ) ) | 
						
							| 171 | 65 64 | addcld |  |-  ( ph -> ( 1 + E ) e. CC ) | 
						
							| 172 | 63 171 | npcand |  |-  ( ph -> ( ( ( `' U ` K ) - ( 1 + E ) ) + ( 1 + E ) ) = ( `' U ` K ) ) | 
						
							| 173 | 170 172 | eqtr2d |  |-  ( ph -> ( `' U ` K ) = ( ( ( ( `' U ` K ) - 1 ) - E ) + ( 1 + E ) ) ) | 
						
							| 174 | 60 173 | fveq12d |  |-  ( ph -> ( U ` ( `' U ` K ) ) = ( ( W splice <. E , E , <" I "> >. ) ` ( ( ( ( `' U ` K ) - 1 ) - E ) + ( 1 + E ) ) ) ) | 
						
							| 175 | 64 76 | pncan3d |  |-  ( ph -> ( E + ( ( # ` W ) - E ) ) = ( # ` W ) ) | 
						
							| 176 | 114 135 | eqeltrd |  |-  ( ph -> ( ( # ` U ) - 1 ) e. ZZ ) | 
						
							| 177 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 178 | 176 177 | zsubcld |  |-  ( ph -> ( ( ( # ` U ) - 1 ) - 1 ) e. ZZ ) | 
						
							| 179 | 178 | zred |  |-  ( ph -> ( ( ( # ` U ) - 1 ) - 1 ) e. RR ) | 
						
							| 180 | 114 142 | eqeltrd |  |-  ( ph -> ( ( # ` U ) - 1 ) e. RR ) | 
						
							| 181 | 180 | ltm1d |  |-  ( ph -> ( ( ( # ` U ) - 1 ) - 1 ) < ( ( # ` U ) - 1 ) ) | 
						
							| 182 | 181 114 | breqtrd |  |-  ( ph -> ( ( ( # ` U ) - 1 ) - 1 ) < ( # ` W ) ) | 
						
							| 183 | 179 142 182 | ltled |  |-  ( ph -> ( ( ( # ` U ) - 1 ) - 1 ) <_ ( # ` W ) ) | 
						
							| 184 |  | eluz1 |  |-  ( ( ( ( # ` U ) - 1 ) - 1 ) e. ZZ -> ( ( # ` W ) e. ( ZZ>= ` ( ( ( # ` U ) - 1 ) - 1 ) ) <-> ( ( # ` W ) e. ZZ /\ ( ( ( # ` U ) - 1 ) - 1 ) <_ ( # ` W ) ) ) ) | 
						
							| 185 | 184 | biimpar |  |-  ( ( ( ( ( # ` U ) - 1 ) - 1 ) e. ZZ /\ ( ( # ` W ) e. ZZ /\ ( ( ( # ` U ) - 1 ) - 1 ) <_ ( # ` W ) ) ) -> ( # ` W ) e. ( ZZ>= ` ( ( ( # ` U ) - 1 ) - 1 ) ) ) | 
						
							| 186 | 178 135 183 185 | syl12anc |  |-  ( ph -> ( # ` W ) e. ( ZZ>= ` ( ( ( # ` U ) - 1 ) - 1 ) ) ) | 
						
							| 187 | 175 186 | eqeltrd |  |-  ( ph -> ( E + ( ( # ` W ) - E ) ) e. ( ZZ>= ` ( ( ( # ` U ) - 1 ) - 1 ) ) ) | 
						
							| 188 |  | fzoss2 |  |-  ( ( E + ( ( # ` W ) - E ) ) e. ( ZZ>= ` ( ( ( # ` U ) - 1 ) - 1 ) ) -> ( E ..^ ( ( ( # ` U ) - 1 ) - 1 ) ) C_ ( E ..^ ( E + ( ( # ` W ) - E ) ) ) ) | 
						
							| 189 | 187 188 | syl |  |-  ( ph -> ( E ..^ ( ( ( # ` U ) - 1 ) - 1 ) ) C_ ( E ..^ ( E + ( ( # ` W ) - E ) ) ) ) | 
						
							| 190 | 189 166 | sseldd |  |-  ( ph -> ( ( `' U ` K ) - 1 ) e. ( E ..^ ( E + ( ( # ` W ) - E ) ) ) ) | 
						
							| 191 | 135 103 | zsubcld |  |-  ( ph -> ( ( # ` W ) - E ) e. ZZ ) | 
						
							| 192 |  | fzosubel3 |  |-  ( ( ( ( `' U ` K ) - 1 ) e. ( E ..^ ( E + ( ( # ` W ) - E ) ) ) /\ ( ( # ` W ) - E ) e. ZZ ) -> ( ( ( `' U ` K ) - 1 ) - E ) e. ( 0 ..^ ( ( # ` W ) - E ) ) ) | 
						
							| 193 | 190 191 192 | syl2anc |  |-  ( ph -> ( ( ( `' U ` K ) - 1 ) - E ) e. ( 0 ..^ ( ( # ` W ) - E ) ) ) | 
						
							| 194 | 18 73 42 20 193 125 | splfv3 |  |-  ( ph -> ( ( W splice <. E , E , <" I "> >. ) ` ( ( ( ( `' U ` K ) - 1 ) - E ) + ( 1 + E ) ) ) = ( W ` ( ( ( ( `' U ` K ) - 1 ) - E ) + E ) ) ) | 
						
							| 195 | 63 65 | subcld |  |-  ( ph -> ( ( `' U ` K ) - 1 ) e. CC ) | 
						
							| 196 | 195 64 | npcand |  |-  ( ph -> ( ( ( ( `' U ` K ) - 1 ) - E ) + E ) = ( ( `' U ` K ) - 1 ) ) | 
						
							| 197 | 196 | fveq2d |  |-  ( ph -> ( W ` ( ( ( ( `' U ` K ) - 1 ) - E ) + E ) ) = ( W ` ( ( `' U ` K ) - 1 ) ) ) | 
						
							| 198 | 174 194 197 | 3eqtrd |  |-  ( ph -> ( U ` ( `' U ` K ) ) = ( W ` ( ( `' U ` K ) - 1 ) ) ) | 
						
							| 199 | 198 58 | eqtr3d |  |-  ( ph -> ( W ` ( ( `' U ` K ) - 1 ) ) = K ) | 
						
							| 200 | 199 | fveq2d |  |-  ( ph -> ( ( M ` W ) ` ( W ` ( ( `' U ` K ) - 1 ) ) ) = ( ( M ` W ) ` K ) ) | 
						
							| 201 | 63 65 | npcand |  |-  ( ph -> ( ( ( `' U ` K ) - 1 ) + 1 ) = ( `' U ` K ) ) | 
						
							| 202 | 201 | fveq2d |  |-  ( ph -> ( W ` ( ( ( `' U ` K ) - 1 ) + 1 ) ) = ( W ` ( `' U ` K ) ) ) | 
						
							| 203 | 168 200 202 | 3eqtr3d |  |-  ( ph -> ( ( M ` W ) ` K ) = ( W ` ( `' U ` K ) ) ) | 
						
							| 204 | 71 126 203 | 3eqtr4rd |  |-  ( ph -> ( ( M ` W ) ` K ) = ( ( W splice <. E , E , <" I "> >. ) ` ( ( ( `' U ` K ) - E ) + ( 1 + E ) ) ) ) | 
						
							| 205 | 69 204 | eqtr4d |  |-  ( ph -> ( ( M ` U ) ` K ) = ( ( M ` W ) ` K ) ) |