Step |
Hyp |
Ref |
Expression |
1 |
|
cycpmco2.c |
⊢ 𝑀 = ( toCyc ‘ 𝐷 ) |
2 |
|
cycpmco2.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) |
3 |
|
cycpmco2.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
4 |
|
cycpmco2.w |
⊢ ( 𝜑 → 𝑊 ∈ dom 𝑀 ) |
5 |
|
cycpmco2.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝐷 ∖ ran 𝑊 ) ) |
6 |
|
cycpmco2.j |
⊢ ( 𝜑 → 𝐽 ∈ ran 𝑊 ) |
7 |
|
cycpmco2.e |
⊢ 𝐸 = ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) |
8 |
|
cycpmco2.1 |
⊢ 𝑈 = ( 𝑊 splice 〈 𝐸 , 𝐸 , 〈“ 𝐼 ”〉 〉 ) |
9 |
|
cycpmco2lem.1 |
⊢ ( 𝜑 → 𝐾 ∈ ran 𝑊 ) |
10 |
|
cycpmco2lem6.2 |
⊢ ( 𝜑 → 𝐾 ≠ 𝐼 ) |
11 |
|
cycpmco2lem6.1 |
⊢ ( 𝜑 → ( ◡ 𝑈 ‘ 𝐾 ) ∈ ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) |
12 |
|
ssrab2 |
⊢ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ⊆ Word 𝐷 |
13 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
14 |
1 2 13
|
tocycf |
⊢ ( 𝐷 ∈ 𝑉 → 𝑀 : { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) ) |
15 |
3 14
|
syl |
⊢ ( 𝜑 → 𝑀 : { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) ) |
16 |
15
|
fdmd |
⊢ ( 𝜑 → dom 𝑀 = { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
17 |
4 16
|
eleqtrd |
⊢ ( 𝜑 → 𝑊 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
18 |
12 17
|
sselid |
⊢ ( 𝜑 → 𝑊 ∈ Word 𝐷 ) |
19 |
5
|
eldifad |
⊢ ( 𝜑 → 𝐼 ∈ 𝐷 ) |
20 |
19
|
s1cld |
⊢ ( 𝜑 → 〈“ 𝐼 ”〉 ∈ Word 𝐷 ) |
21 |
|
splcl |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 〈“ 𝐼 ”〉 ∈ Word 𝐷 ) → ( 𝑊 splice 〈 𝐸 , 𝐸 , 〈“ 𝐼 ”〉 〉 ) ∈ Word 𝐷 ) |
22 |
18 20 21
|
syl2anc |
⊢ ( 𝜑 → ( 𝑊 splice 〈 𝐸 , 𝐸 , 〈“ 𝐼 ”〉 〉 ) ∈ Word 𝐷 ) |
23 |
8 22
|
eqeltrid |
⊢ ( 𝜑 → 𝑈 ∈ Word 𝐷 ) |
24 |
1 2 3 4 5 6 7 8
|
cycpmco2f1 |
⊢ ( 𝜑 → 𝑈 : dom 𝑈 –1-1→ 𝐷 ) |
25 |
|
fz0ssnn0 |
⊢ ( 0 ... ( ♯ ‘ 𝑊 ) ) ⊆ ℕ0 |
26 |
|
id |
⊢ ( 𝑤 = 𝑊 → 𝑤 = 𝑊 ) |
27 |
|
dmeq |
⊢ ( 𝑤 = 𝑊 → dom 𝑤 = dom 𝑊 ) |
28 |
|
eqidd |
⊢ ( 𝑤 = 𝑊 → 𝐷 = 𝐷 ) |
29 |
26 27 28
|
f1eq123d |
⊢ ( 𝑤 = 𝑊 → ( 𝑤 : dom 𝑤 –1-1→ 𝐷 ↔ 𝑊 : dom 𝑊 –1-1→ 𝐷 ) ) |
30 |
29
|
elrab |
⊢ ( 𝑊 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ↔ ( 𝑊 ∈ Word 𝐷 ∧ 𝑊 : dom 𝑊 –1-1→ 𝐷 ) ) |
31 |
17 30
|
sylib |
⊢ ( 𝜑 → ( 𝑊 ∈ Word 𝐷 ∧ 𝑊 : dom 𝑊 –1-1→ 𝐷 ) ) |
32 |
31
|
simprd |
⊢ ( 𝜑 → 𝑊 : dom 𝑊 –1-1→ 𝐷 ) |
33 |
|
f1cnv |
⊢ ( 𝑊 : dom 𝑊 –1-1→ 𝐷 → ◡ 𝑊 : ran 𝑊 –1-1-onto→ dom 𝑊 ) |
34 |
|
f1of |
⊢ ( ◡ 𝑊 : ran 𝑊 –1-1-onto→ dom 𝑊 → ◡ 𝑊 : ran 𝑊 ⟶ dom 𝑊 ) |
35 |
32 33 34
|
3syl |
⊢ ( 𝜑 → ◡ 𝑊 : ran 𝑊 ⟶ dom 𝑊 ) |
36 |
35 6
|
ffvelrnd |
⊢ ( 𝜑 → ( ◡ 𝑊 ‘ 𝐽 ) ∈ dom 𝑊 ) |
37 |
|
wrddm |
⊢ ( 𝑊 ∈ Word 𝐷 → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
38 |
18 37
|
syl |
⊢ ( 𝜑 → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
39 |
36 38
|
eleqtrd |
⊢ ( 𝜑 → ( ◡ 𝑊 ‘ 𝐽 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
40 |
|
fzofzp1 |
⊢ ( ( ◡ 𝑊 ‘ 𝐽 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
41 |
39 40
|
syl |
⊢ ( 𝜑 → ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
42 |
7 41
|
eqeltrid |
⊢ ( 𝜑 → 𝐸 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
43 |
25 42
|
sselid |
⊢ ( 𝜑 → 𝐸 ∈ ℕ0 ) |
44 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
45 |
43 44
|
eleqtrdi |
⊢ ( 𝜑 → 𝐸 ∈ ( ℤ≥ ‘ 0 ) ) |
46 |
|
fzoss1 |
⊢ ( 𝐸 ∈ ( ℤ≥ ‘ 0 ) → ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) ⊆ ( 0 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) |
47 |
45 46
|
syl |
⊢ ( 𝜑 → ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) ⊆ ( 0 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) |
48 |
47 11
|
sseldd |
⊢ ( 𝜑 → ( ◡ 𝑈 ‘ 𝐾 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) |
49 |
1 3 23 24 48
|
cycpmfv1 |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑈 ) ‘ ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) ) = ( 𝑈 ‘ ( ( ◡ 𝑈 ‘ 𝐾 ) + 1 ) ) ) |
50 |
|
f1f1orn |
⊢ ( 𝑈 : dom 𝑈 –1-1→ 𝐷 → 𝑈 : dom 𝑈 –1-1-onto→ ran 𝑈 ) |
51 |
24 50
|
syl |
⊢ ( 𝜑 → 𝑈 : dom 𝑈 –1-1-onto→ ran 𝑈 ) |
52 |
|
ssun1 |
⊢ ran 𝑊 ⊆ ( ran 𝑊 ∪ { 𝐼 } ) |
53 |
1 2 3 4 5 6 7 8
|
cycpmco2rn |
⊢ ( 𝜑 → ran 𝑈 = ( ran 𝑊 ∪ { 𝐼 } ) ) |
54 |
52 53
|
sseqtrrid |
⊢ ( 𝜑 → ran 𝑊 ⊆ ran 𝑈 ) |
55 |
54
|
sselda |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ran 𝑊 ) → 𝐾 ∈ ran 𝑈 ) |
56 |
|
f1ocnvfv2 |
⊢ ( ( 𝑈 : dom 𝑈 –1-1-onto→ ran 𝑈 ∧ 𝐾 ∈ ran 𝑈 ) → ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) = 𝐾 ) |
57 |
51 55 56
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ran 𝑊 ) → ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) = 𝐾 ) |
58 |
9 57
|
mpdan |
⊢ ( 𝜑 → ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) = 𝐾 ) |
59 |
58
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑈 ) ‘ ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) ) = ( ( 𝑀 ‘ 𝑈 ) ‘ 𝐾 ) ) |
60 |
8
|
a1i |
⊢ ( 𝜑 → 𝑈 = ( 𝑊 splice 〈 𝐸 , 𝐸 , 〈“ 𝐼 ”〉 〉 ) ) |
61 |
|
fzossz |
⊢ ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) ⊆ ℤ |
62 |
61 11
|
sselid |
⊢ ( 𝜑 → ( ◡ 𝑈 ‘ 𝐾 ) ∈ ℤ ) |
63 |
62
|
zcnd |
⊢ ( 𝜑 → ( ◡ 𝑈 ‘ 𝐾 ) ∈ ℂ ) |
64 |
43
|
nn0cnd |
⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
65 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
66 |
63 64 65
|
nppcan3d |
⊢ ( 𝜑 → ( ( ( ◡ 𝑈 ‘ 𝐾 ) − 𝐸 ) + ( 1 + 𝐸 ) ) = ( ( ◡ 𝑈 ‘ 𝐾 ) + 1 ) ) |
67 |
66
|
eqcomd |
⊢ ( 𝜑 → ( ( ◡ 𝑈 ‘ 𝐾 ) + 1 ) = ( ( ( ◡ 𝑈 ‘ 𝐾 ) − 𝐸 ) + ( 1 + 𝐸 ) ) ) |
68 |
60 67
|
fveq12d |
⊢ ( 𝜑 → ( 𝑈 ‘ ( ( ◡ 𝑈 ‘ 𝐾 ) + 1 ) ) = ( ( 𝑊 splice 〈 𝐸 , 𝐸 , 〈“ 𝐼 ”〉 〉 ) ‘ ( ( ( ◡ 𝑈 ‘ 𝐾 ) − 𝐸 ) + ( 1 + 𝐸 ) ) ) ) |
69 |
49 59 68
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑈 ) ‘ 𝐾 ) = ( ( 𝑊 splice 〈 𝐸 , 𝐸 , 〈“ 𝐼 ”〉 〉 ) ‘ ( ( ( ◡ 𝑈 ‘ 𝐾 ) − 𝐸 ) + ( 1 + 𝐸 ) ) ) ) |
70 |
63 64
|
npcand |
⊢ ( 𝜑 → ( ( ( ◡ 𝑈 ‘ 𝐾 ) − 𝐸 ) + 𝐸 ) = ( ◡ 𝑈 ‘ 𝐾 ) ) |
71 |
70
|
fveq2d |
⊢ ( 𝜑 → ( 𝑊 ‘ ( ( ( ◡ 𝑈 ‘ 𝐾 ) − 𝐸 ) + 𝐸 ) ) = ( 𝑊 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) ) |
72 |
|
nn0fz0 |
⊢ ( 𝐸 ∈ ℕ0 ↔ 𝐸 ∈ ( 0 ... 𝐸 ) ) |
73 |
43 72
|
sylib |
⊢ ( 𝜑 → 𝐸 ∈ ( 0 ... 𝐸 ) ) |
74 |
|
lencl |
⊢ ( 𝑊 ∈ Word 𝐷 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
75 |
18 74
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
76 |
75
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℂ ) |
77 |
|
ovexd |
⊢ ( 𝜑 → ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) ∈ V ) |
78 |
7 77
|
eqeltrid |
⊢ ( 𝜑 → 𝐸 ∈ V ) |
79 |
|
splval |
⊢ ( ( 𝑊 ∈ dom 𝑀 ∧ ( 𝐸 ∈ V ∧ 𝐸 ∈ V ∧ 〈“ 𝐼 ”〉 ∈ Word 𝐷 ) ) → ( 𝑊 splice 〈 𝐸 , 𝐸 , 〈“ 𝐼 ”〉 〉 ) = ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) |
80 |
4 78 78 20 79
|
syl13anc |
⊢ ( 𝜑 → ( 𝑊 splice 〈 𝐸 , 𝐸 , 〈“ 𝐼 ”〉 〉 ) = ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) |
81 |
8 80
|
syl5eq |
⊢ ( 𝜑 → 𝑈 = ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) |
82 |
81
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ 𝑈 ) = ( ♯ ‘ ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) |
83 |
|
pfxcl |
⊢ ( 𝑊 ∈ Word 𝐷 → ( 𝑊 prefix 𝐸 ) ∈ Word 𝐷 ) |
84 |
18 83
|
syl |
⊢ ( 𝜑 → ( 𝑊 prefix 𝐸 ) ∈ Word 𝐷 ) |
85 |
|
ccatcl |
⊢ ( ( ( 𝑊 prefix 𝐸 ) ∈ Word 𝐷 ∧ 〈“ 𝐼 ”〉 ∈ Word 𝐷 ) → ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ∈ Word 𝐷 ) |
86 |
84 20 85
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ∈ Word 𝐷 ) |
87 |
|
swrdcl |
⊢ ( 𝑊 ∈ Word 𝐷 → ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ∈ Word 𝐷 ) |
88 |
18 87
|
syl |
⊢ ( 𝜑 → ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ∈ Word 𝐷 ) |
89 |
|
ccatlen |
⊢ ( ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ∈ Word 𝐷 ∧ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ∈ Word 𝐷 ) → ( ♯ ‘ ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) = ( ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) + ( ♯ ‘ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) |
90 |
86 88 89
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ++ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) = ( ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) + ( ♯ ‘ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) |
91 |
|
ccatws1len |
⊢ ( ( 𝑊 prefix 𝐸 ) ∈ Word 𝐷 → ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) = ( ( ♯ ‘ ( 𝑊 prefix 𝐸 ) ) + 1 ) ) |
92 |
18 83 91
|
3syl |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) = ( ( ♯ ‘ ( 𝑊 prefix 𝐸 ) ) + 1 ) ) |
93 |
|
pfxlen |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 𝐸 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( 𝑊 prefix 𝐸 ) ) = 𝐸 ) |
94 |
18 42 93
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑊 prefix 𝐸 ) ) = 𝐸 ) |
95 |
94
|
oveq1d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝑊 prefix 𝐸 ) ) + 1 ) = ( 𝐸 + 1 ) ) |
96 |
92 95
|
eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) = ( 𝐸 + 1 ) ) |
97 |
|
nn0fz0 |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ↔ ( ♯ ‘ 𝑊 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
98 |
75 97
|
sylib |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
99 |
|
swrdlen |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 𝐸 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) = ( ( ♯ ‘ 𝑊 ) − 𝐸 ) ) |
100 |
18 42 98 99
|
syl3anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) = ( ( ♯ ‘ 𝑊 ) − 𝐸 ) ) |
101 |
96 100
|
oveq12d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( ( 𝑊 prefix 𝐸 ) ++ 〈“ 𝐼 ”〉 ) ) + ( ♯ ‘ ( 𝑊 substr 〈 𝐸 , ( ♯ ‘ 𝑊 ) 〉 ) ) ) = ( ( 𝐸 + 1 ) + ( ( ♯ ‘ 𝑊 ) − 𝐸 ) ) ) |
102 |
82 90 101
|
3eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑈 ) = ( ( 𝐸 + 1 ) + ( ( ♯ ‘ 𝑊 ) − 𝐸 ) ) ) |
103 |
43
|
nn0zd |
⊢ ( 𝜑 → 𝐸 ∈ ℤ ) |
104 |
103
|
peano2zd |
⊢ ( 𝜑 → ( 𝐸 + 1 ) ∈ ℤ ) |
105 |
104
|
zcnd |
⊢ ( 𝜑 → ( 𝐸 + 1 ) ∈ ℂ ) |
106 |
105 76 64
|
addsubassd |
⊢ ( 𝜑 → ( ( ( 𝐸 + 1 ) + ( ♯ ‘ 𝑊 ) ) − 𝐸 ) = ( ( 𝐸 + 1 ) + ( ( ♯ ‘ 𝑊 ) − 𝐸 ) ) ) |
107 |
64 65 76
|
addassd |
⊢ ( 𝜑 → ( ( 𝐸 + 1 ) + ( ♯ ‘ 𝑊 ) ) = ( 𝐸 + ( 1 + ( ♯ ‘ 𝑊 ) ) ) ) |
108 |
107
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐸 + 1 ) + ( ♯ ‘ 𝑊 ) ) − 𝐸 ) = ( ( 𝐸 + ( 1 + ( ♯ ‘ 𝑊 ) ) ) − 𝐸 ) ) |
109 |
102 106 108
|
3eqtr2d |
⊢ ( 𝜑 → ( ♯ ‘ 𝑈 ) = ( ( 𝐸 + ( 1 + ( ♯ ‘ 𝑊 ) ) ) − 𝐸 ) ) |
110 |
65 76
|
addcld |
⊢ ( 𝜑 → ( 1 + ( ♯ ‘ 𝑊 ) ) ∈ ℂ ) |
111 |
64 110
|
pncan2d |
⊢ ( 𝜑 → ( ( 𝐸 + ( 1 + ( ♯ ‘ 𝑊 ) ) ) − 𝐸 ) = ( 1 + ( ♯ ‘ 𝑊 ) ) ) |
112 |
65 76
|
addcomd |
⊢ ( 𝜑 → ( 1 + ( ♯ ‘ 𝑊 ) ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) |
113 |
109 111 112
|
3eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑈 ) = ( ( ♯ ‘ 𝑊 ) + 1 ) ) |
114 |
76 65 113
|
mvrraddd |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑈 ) − 1 ) = ( ♯ ‘ 𝑊 ) ) |
115 |
114
|
oveq2d |
⊢ ( 𝜑 → ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) = ( 𝐸 ..^ ( ♯ ‘ 𝑊 ) ) ) |
116 |
11 115
|
eleqtrd |
⊢ ( 𝜑 → ( ◡ 𝑈 ‘ 𝐾 ) ∈ ( 𝐸 ..^ ( ♯ ‘ 𝑊 ) ) ) |
117 |
|
fzosubel |
⊢ ( ( ( ◡ 𝑈 ‘ 𝐾 ) ∈ ( 𝐸 ..^ ( ♯ ‘ 𝑊 ) ) ∧ 𝐸 ∈ ℤ ) → ( ( ◡ 𝑈 ‘ 𝐾 ) − 𝐸 ) ∈ ( ( 𝐸 − 𝐸 ) ..^ ( ( ♯ ‘ 𝑊 ) − 𝐸 ) ) ) |
118 |
116 103 117
|
syl2anc |
⊢ ( 𝜑 → ( ( ◡ 𝑈 ‘ 𝐾 ) − 𝐸 ) ∈ ( ( 𝐸 − 𝐸 ) ..^ ( ( ♯ ‘ 𝑊 ) − 𝐸 ) ) ) |
119 |
64
|
subidd |
⊢ ( 𝜑 → ( 𝐸 − 𝐸 ) = 0 ) |
120 |
119
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐸 − 𝐸 ) ..^ ( ( ♯ ‘ 𝑊 ) − 𝐸 ) ) = ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 𝐸 ) ) ) |
121 |
118 120
|
eleqtrd |
⊢ ( 𝜑 → ( ( ◡ 𝑈 ‘ 𝐾 ) − 𝐸 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 𝐸 ) ) ) |
122 |
65 64
|
addcomd |
⊢ ( 𝜑 → ( 1 + 𝐸 ) = ( 𝐸 + 1 ) ) |
123 |
|
s1len |
⊢ ( ♯ ‘ 〈“ 𝐼 ”〉 ) = 1 |
124 |
123
|
oveq2i |
⊢ ( 𝐸 + ( ♯ ‘ 〈“ 𝐼 ”〉 ) ) = ( 𝐸 + 1 ) |
125 |
122 124
|
eqtr4di |
⊢ ( 𝜑 → ( 1 + 𝐸 ) = ( 𝐸 + ( ♯ ‘ 〈“ 𝐼 ”〉 ) ) ) |
126 |
18 73 42 20 121 125
|
splfv3 |
⊢ ( 𝜑 → ( ( 𝑊 splice 〈 𝐸 , 𝐸 , 〈“ 𝐼 ”〉 〉 ) ‘ ( ( ( ◡ 𝑈 ‘ 𝐾 ) − 𝐸 ) + ( 1 + 𝐸 ) ) ) = ( 𝑊 ‘ ( ( ( ◡ 𝑈 ‘ 𝐾 ) − 𝐸 ) + 𝐸 ) ) ) |
127 |
114
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝑈 ) − 1 ) − 1 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) |
128 |
127
|
oveq2d |
⊢ ( 𝜑 → ( 𝐸 ..^ ( ( ( ♯ ‘ 𝑈 ) − 1 ) − 1 ) ) = ( 𝐸 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
129 |
|
fzoss1 |
⊢ ( 𝐸 ∈ ( ℤ≥ ‘ 0 ) → ( 𝐸 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ⊆ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
130 |
45 129
|
syl |
⊢ ( 𝜑 → ( 𝐸 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ⊆ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
131 |
128 130
|
eqsstrd |
⊢ ( 𝜑 → ( 𝐸 ..^ ( ( ( ♯ ‘ 𝑈 ) − 1 ) − 1 ) ) ⊆ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
132 |
|
f1ocnvdm |
⊢ ( ( 𝑈 : dom 𝑈 –1-1-onto→ ran 𝑈 ∧ 𝐾 ∈ ran 𝑈 ) → ( ◡ 𝑈 ‘ 𝐾 ) ∈ dom 𝑈 ) |
133 |
51 55 132
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ran 𝑊 ) → ( ◡ 𝑈 ‘ 𝐾 ) ∈ dom 𝑈 ) |
134 |
9 133
|
mpdan |
⊢ ( 𝜑 → ( ◡ 𝑈 ‘ 𝐾 ) ∈ dom 𝑈 ) |
135 |
75
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
136 |
135
|
peano2zd |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑊 ) + 1 ) ∈ ℤ ) |
137 |
|
elfzonn0 |
⊢ ( ( ◡ 𝑊 ‘ 𝐽 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ◡ 𝑊 ‘ 𝐽 ) ∈ ℕ0 ) |
138 |
|
nn0p1nn |
⊢ ( ( ◡ 𝑊 ‘ 𝐽 ) ∈ ℕ0 → ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) ∈ ℕ ) |
139 |
39 137 138
|
3syl |
⊢ ( 𝜑 → ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) ∈ ℕ ) |
140 |
7 139
|
eqeltrid |
⊢ ( 𝜑 → 𝐸 ∈ ℕ ) |
141 |
140
|
nnred |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
142 |
135
|
zred |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℝ ) |
143 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
144 |
|
elfzle2 |
⊢ ( 𝐸 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → 𝐸 ≤ ( ♯ ‘ 𝑊 ) ) |
145 |
42 144
|
syl |
⊢ ( 𝜑 → 𝐸 ≤ ( ♯ ‘ 𝑊 ) ) |
146 |
141 142 143 145
|
leadd1dd |
⊢ ( 𝜑 → ( 𝐸 + 1 ) ≤ ( ( ♯ ‘ 𝑊 ) + 1 ) ) |
147 |
|
eluz2 |
⊢ ( ( ( ♯ ‘ 𝑊 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝐸 + 1 ) ) ↔ ( ( 𝐸 + 1 ) ∈ ℤ ∧ ( ( ♯ ‘ 𝑊 ) + 1 ) ∈ ℤ ∧ ( 𝐸 + 1 ) ≤ ( ( ♯ ‘ 𝑊 ) + 1 ) ) ) |
148 |
104 136 146 147
|
syl3anbrc |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑊 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝐸 + 1 ) ) ) |
149 |
|
fzoss2 |
⊢ ( ( ( ♯ ‘ 𝑊 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝐸 + 1 ) ) → ( 0 ..^ ( 𝐸 + 1 ) ) ⊆ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) + 1 ) ) ) |
150 |
148 149
|
syl |
⊢ ( 𝜑 → ( 0 ..^ ( 𝐸 + 1 ) ) ⊆ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) + 1 ) ) ) |
151 |
|
fzonn0p1 |
⊢ ( 𝐸 ∈ ℕ0 → 𝐸 ∈ ( 0 ..^ ( 𝐸 + 1 ) ) ) |
152 |
43 151
|
syl |
⊢ ( 𝜑 → 𝐸 ∈ ( 0 ..^ ( 𝐸 + 1 ) ) ) |
153 |
150 152
|
sseldd |
⊢ ( 𝜑 → 𝐸 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) + 1 ) ) ) |
154 |
113
|
oveq2d |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝑈 ) ) = ( 0 ..^ ( ( ♯ ‘ 𝑊 ) + 1 ) ) ) |
155 |
153 154
|
eleqtrrd |
⊢ ( 𝜑 → 𝐸 ∈ ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ) |
156 |
|
wrddm |
⊢ ( 𝑈 ∈ Word 𝐷 → dom 𝑈 = ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ) |
157 |
23 156
|
syl |
⊢ ( 𝜑 → dom 𝑈 = ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ) |
158 |
155 157
|
eleqtrrd |
⊢ ( 𝜑 → 𝐸 ∈ dom 𝑈 ) |
159 |
1 2 3 4 5 6 7 8
|
cycpmco2lem2 |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝐸 ) = 𝐼 ) |
160 |
10 58 159
|
3netr4d |
⊢ ( 𝜑 → ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) ≠ ( 𝑈 ‘ 𝐸 ) ) |
161 |
|
f1fveq |
⊢ ( ( 𝑈 : dom 𝑈 –1-1→ 𝐷 ∧ ( ( ◡ 𝑈 ‘ 𝐾 ) ∈ dom 𝑈 ∧ 𝐸 ∈ dom 𝑈 ) ) → ( ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) = ( 𝑈 ‘ 𝐸 ) ↔ ( ◡ 𝑈 ‘ 𝐾 ) = 𝐸 ) ) |
162 |
161
|
necon3bid |
⊢ ( ( 𝑈 : dom 𝑈 –1-1→ 𝐷 ∧ ( ( ◡ 𝑈 ‘ 𝐾 ) ∈ dom 𝑈 ∧ 𝐸 ∈ dom 𝑈 ) ) → ( ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) ≠ ( 𝑈 ‘ 𝐸 ) ↔ ( ◡ 𝑈 ‘ 𝐾 ) ≠ 𝐸 ) ) |
163 |
162
|
biimp3a |
⊢ ( ( 𝑈 : dom 𝑈 –1-1→ 𝐷 ∧ ( ( ◡ 𝑈 ‘ 𝐾 ) ∈ dom 𝑈 ∧ 𝐸 ∈ dom 𝑈 ) ∧ ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) ≠ ( 𝑈 ‘ 𝐸 ) ) → ( ◡ 𝑈 ‘ 𝐾 ) ≠ 𝐸 ) |
164 |
24 134 158 160 163
|
syl121anc |
⊢ ( 𝜑 → ( ◡ 𝑈 ‘ 𝐾 ) ≠ 𝐸 ) |
165 |
|
fzom1ne1 |
⊢ ( ( ( ◡ 𝑈 ‘ 𝐾 ) ∈ ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) ∧ ( ◡ 𝑈 ‘ 𝐾 ) ≠ 𝐸 ) → ( ( ◡ 𝑈 ‘ 𝐾 ) − 1 ) ∈ ( 𝐸 ..^ ( ( ( ♯ ‘ 𝑈 ) − 1 ) − 1 ) ) ) |
166 |
11 164 165
|
syl2anc |
⊢ ( 𝜑 → ( ( ◡ 𝑈 ‘ 𝐾 ) − 1 ) ∈ ( 𝐸 ..^ ( ( ( ♯ ‘ 𝑈 ) − 1 ) − 1 ) ) ) |
167 |
131 166
|
sseldd |
⊢ ( 𝜑 → ( ( ◡ 𝑈 ‘ 𝐾 ) − 1 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
168 |
1 3 18 32 167
|
cycpmfv1 |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑊 ) ‘ ( 𝑊 ‘ ( ( ◡ 𝑈 ‘ 𝐾 ) − 1 ) ) ) = ( 𝑊 ‘ ( ( ( ◡ 𝑈 ‘ 𝐾 ) − 1 ) + 1 ) ) ) |
169 |
63 65 64
|
subsub4d |
⊢ ( 𝜑 → ( ( ( ◡ 𝑈 ‘ 𝐾 ) − 1 ) − 𝐸 ) = ( ( ◡ 𝑈 ‘ 𝐾 ) − ( 1 + 𝐸 ) ) ) |
170 |
169
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ◡ 𝑈 ‘ 𝐾 ) − 1 ) − 𝐸 ) + ( 1 + 𝐸 ) ) = ( ( ( ◡ 𝑈 ‘ 𝐾 ) − ( 1 + 𝐸 ) ) + ( 1 + 𝐸 ) ) ) |
171 |
65 64
|
addcld |
⊢ ( 𝜑 → ( 1 + 𝐸 ) ∈ ℂ ) |
172 |
63 171
|
npcand |
⊢ ( 𝜑 → ( ( ( ◡ 𝑈 ‘ 𝐾 ) − ( 1 + 𝐸 ) ) + ( 1 + 𝐸 ) ) = ( ◡ 𝑈 ‘ 𝐾 ) ) |
173 |
170 172
|
eqtr2d |
⊢ ( 𝜑 → ( ◡ 𝑈 ‘ 𝐾 ) = ( ( ( ( ◡ 𝑈 ‘ 𝐾 ) − 1 ) − 𝐸 ) + ( 1 + 𝐸 ) ) ) |
174 |
60 173
|
fveq12d |
⊢ ( 𝜑 → ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) = ( ( 𝑊 splice 〈 𝐸 , 𝐸 , 〈“ 𝐼 ”〉 〉 ) ‘ ( ( ( ( ◡ 𝑈 ‘ 𝐾 ) − 1 ) − 𝐸 ) + ( 1 + 𝐸 ) ) ) ) |
175 |
64 76
|
pncan3d |
⊢ ( 𝜑 → ( 𝐸 + ( ( ♯ ‘ 𝑊 ) − 𝐸 ) ) = ( ♯ ‘ 𝑊 ) ) |
176 |
114 135
|
eqeltrd |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑈 ) − 1 ) ∈ ℤ ) |
177 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
178 |
176 177
|
zsubcld |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝑈 ) − 1 ) − 1 ) ∈ ℤ ) |
179 |
178
|
zred |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝑈 ) − 1 ) − 1 ) ∈ ℝ ) |
180 |
114 142
|
eqeltrd |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑈 ) − 1 ) ∈ ℝ ) |
181 |
180
|
ltm1d |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝑈 ) − 1 ) − 1 ) < ( ( ♯ ‘ 𝑈 ) − 1 ) ) |
182 |
181 114
|
breqtrd |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝑈 ) − 1 ) − 1 ) < ( ♯ ‘ 𝑊 ) ) |
183 |
179 142 182
|
ltled |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝑈 ) − 1 ) − 1 ) ≤ ( ♯ ‘ 𝑊 ) ) |
184 |
|
eluz1 |
⊢ ( ( ( ( ♯ ‘ 𝑈 ) − 1 ) − 1 ) ∈ ℤ → ( ( ♯ ‘ 𝑊 ) ∈ ( ℤ≥ ‘ ( ( ( ♯ ‘ 𝑈 ) − 1 ) − 1 ) ) ↔ ( ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ ( ( ( ♯ ‘ 𝑈 ) − 1 ) − 1 ) ≤ ( ♯ ‘ 𝑊 ) ) ) ) |
185 |
184
|
biimpar |
⊢ ( ( ( ( ( ♯ ‘ 𝑈 ) − 1 ) − 1 ) ∈ ℤ ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ ( ( ( ♯ ‘ 𝑈 ) − 1 ) − 1 ) ≤ ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ 𝑊 ) ∈ ( ℤ≥ ‘ ( ( ( ♯ ‘ 𝑈 ) − 1 ) − 1 ) ) ) |
186 |
178 135 183 185
|
syl12anc |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ( ℤ≥ ‘ ( ( ( ♯ ‘ 𝑈 ) − 1 ) − 1 ) ) ) |
187 |
175 186
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐸 + ( ( ♯ ‘ 𝑊 ) − 𝐸 ) ) ∈ ( ℤ≥ ‘ ( ( ( ♯ ‘ 𝑈 ) − 1 ) − 1 ) ) ) |
188 |
|
fzoss2 |
⊢ ( ( 𝐸 + ( ( ♯ ‘ 𝑊 ) − 𝐸 ) ) ∈ ( ℤ≥ ‘ ( ( ( ♯ ‘ 𝑈 ) − 1 ) − 1 ) ) → ( 𝐸 ..^ ( ( ( ♯ ‘ 𝑈 ) − 1 ) − 1 ) ) ⊆ ( 𝐸 ..^ ( 𝐸 + ( ( ♯ ‘ 𝑊 ) − 𝐸 ) ) ) ) |
189 |
187 188
|
syl |
⊢ ( 𝜑 → ( 𝐸 ..^ ( ( ( ♯ ‘ 𝑈 ) − 1 ) − 1 ) ) ⊆ ( 𝐸 ..^ ( 𝐸 + ( ( ♯ ‘ 𝑊 ) − 𝐸 ) ) ) ) |
190 |
189 166
|
sseldd |
⊢ ( 𝜑 → ( ( ◡ 𝑈 ‘ 𝐾 ) − 1 ) ∈ ( 𝐸 ..^ ( 𝐸 + ( ( ♯ ‘ 𝑊 ) − 𝐸 ) ) ) ) |
191 |
135 103
|
zsubcld |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑊 ) − 𝐸 ) ∈ ℤ ) |
192 |
|
fzosubel3 |
⊢ ( ( ( ( ◡ 𝑈 ‘ 𝐾 ) − 1 ) ∈ ( 𝐸 ..^ ( 𝐸 + ( ( ♯ ‘ 𝑊 ) − 𝐸 ) ) ) ∧ ( ( ♯ ‘ 𝑊 ) − 𝐸 ) ∈ ℤ ) → ( ( ( ◡ 𝑈 ‘ 𝐾 ) − 1 ) − 𝐸 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 𝐸 ) ) ) |
193 |
190 191 192
|
syl2anc |
⊢ ( 𝜑 → ( ( ( ◡ 𝑈 ‘ 𝐾 ) − 1 ) − 𝐸 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 𝐸 ) ) ) |
194 |
18 73 42 20 193 125
|
splfv3 |
⊢ ( 𝜑 → ( ( 𝑊 splice 〈 𝐸 , 𝐸 , 〈“ 𝐼 ”〉 〉 ) ‘ ( ( ( ( ◡ 𝑈 ‘ 𝐾 ) − 1 ) − 𝐸 ) + ( 1 + 𝐸 ) ) ) = ( 𝑊 ‘ ( ( ( ( ◡ 𝑈 ‘ 𝐾 ) − 1 ) − 𝐸 ) + 𝐸 ) ) ) |
195 |
63 65
|
subcld |
⊢ ( 𝜑 → ( ( ◡ 𝑈 ‘ 𝐾 ) − 1 ) ∈ ℂ ) |
196 |
195 64
|
npcand |
⊢ ( 𝜑 → ( ( ( ( ◡ 𝑈 ‘ 𝐾 ) − 1 ) − 𝐸 ) + 𝐸 ) = ( ( ◡ 𝑈 ‘ 𝐾 ) − 1 ) ) |
197 |
196
|
fveq2d |
⊢ ( 𝜑 → ( 𝑊 ‘ ( ( ( ( ◡ 𝑈 ‘ 𝐾 ) − 1 ) − 𝐸 ) + 𝐸 ) ) = ( 𝑊 ‘ ( ( ◡ 𝑈 ‘ 𝐾 ) − 1 ) ) ) |
198 |
174 194 197
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) = ( 𝑊 ‘ ( ( ◡ 𝑈 ‘ 𝐾 ) − 1 ) ) ) |
199 |
198 58
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑊 ‘ ( ( ◡ 𝑈 ‘ 𝐾 ) − 1 ) ) = 𝐾 ) |
200 |
199
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑊 ) ‘ ( 𝑊 ‘ ( ( ◡ 𝑈 ‘ 𝐾 ) − 1 ) ) ) = ( ( 𝑀 ‘ 𝑊 ) ‘ 𝐾 ) ) |
201 |
63 65
|
npcand |
⊢ ( 𝜑 → ( ( ( ◡ 𝑈 ‘ 𝐾 ) − 1 ) + 1 ) = ( ◡ 𝑈 ‘ 𝐾 ) ) |
202 |
201
|
fveq2d |
⊢ ( 𝜑 → ( 𝑊 ‘ ( ( ( ◡ 𝑈 ‘ 𝐾 ) − 1 ) + 1 ) ) = ( 𝑊 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) ) |
203 |
168 200 202
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑊 ) ‘ 𝐾 ) = ( 𝑊 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) ) |
204 |
71 126 203
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑊 ) ‘ 𝐾 ) = ( ( 𝑊 splice 〈 𝐸 , 𝐸 , 〈“ 𝐼 ”〉 〉 ) ‘ ( ( ( ◡ 𝑈 ‘ 𝐾 ) − 𝐸 ) + ( 1 + 𝐸 ) ) ) ) |
205 |
69 204
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑈 ) ‘ 𝐾 ) = ( ( 𝑀 ‘ 𝑊 ) ‘ 𝐾 ) ) |