| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycpmco2.c | ⊢ 𝑀  =  ( toCyc ‘ 𝐷 ) | 
						
							| 2 |  | cycpmco2.s | ⊢ 𝑆  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 3 |  | cycpmco2.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑉 ) | 
						
							| 4 |  | cycpmco2.w | ⊢ ( 𝜑  →  𝑊  ∈  dom  𝑀 ) | 
						
							| 5 |  | cycpmco2.i | ⊢ ( 𝜑  →  𝐼  ∈  ( 𝐷  ∖  ran  𝑊 ) ) | 
						
							| 6 |  | cycpmco2.j | ⊢ ( 𝜑  →  𝐽  ∈  ran  𝑊 ) | 
						
							| 7 |  | cycpmco2.e | ⊢ 𝐸  =  ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 ) | 
						
							| 8 |  | cycpmco2.1 | ⊢ 𝑈  =  ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 ) | 
						
							| 9 |  | cycpmco2lem.1 | ⊢ ( 𝜑  →  𝐾  ∈  ran  𝑊 ) | 
						
							| 10 |  | cycpmco2lem6.2 | ⊢ ( 𝜑  →  𝐾  ≠  𝐼 ) | 
						
							| 11 |  | cycpmco2lem6.1 | ⊢ ( 𝜑  →  ( ◡ 𝑈 ‘ 𝐾 )  ∈  ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) ) ) | 
						
							| 12 |  | ssrab2 | ⊢ { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ⊆  Word  𝐷 | 
						
							| 13 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 14 | 1 2 13 | tocycf | ⊢ ( 𝐷  ∈  𝑉  →  𝑀 : { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 15 | 3 14 | syl | ⊢ ( 𝜑  →  𝑀 : { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 16 | 15 | fdmd | ⊢ ( 𝜑  →  dom  𝑀  =  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ) | 
						
							| 17 | 4 16 | eleqtrd | ⊢ ( 𝜑  →  𝑊  ∈  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ) | 
						
							| 18 | 12 17 | sselid | ⊢ ( 𝜑  →  𝑊  ∈  Word  𝐷 ) | 
						
							| 19 | 5 | eldifad | ⊢ ( 𝜑  →  𝐼  ∈  𝐷 ) | 
						
							| 20 | 19 | s1cld | ⊢ ( 𝜑  →  〈“ 𝐼 ”〉  ∈  Word  𝐷 ) | 
						
							| 21 |  | splcl | ⊢ ( ( 𝑊  ∈  Word  𝐷  ∧  〈“ 𝐼 ”〉  ∈  Word  𝐷 )  →  ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 )  ∈  Word  𝐷 ) | 
						
							| 22 | 18 20 21 | syl2anc | ⊢ ( 𝜑  →  ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 )  ∈  Word  𝐷 ) | 
						
							| 23 | 8 22 | eqeltrid | ⊢ ( 𝜑  →  𝑈  ∈  Word  𝐷 ) | 
						
							| 24 | 1 2 3 4 5 6 7 8 | cycpmco2f1 | ⊢ ( 𝜑  →  𝑈 : dom  𝑈 –1-1→ 𝐷 ) | 
						
							| 25 |  | fz0ssnn0 | ⊢ ( 0 ... ( ♯ ‘ 𝑊 ) )  ⊆  ℕ0 | 
						
							| 26 |  | id | ⊢ ( 𝑤  =  𝑊  →  𝑤  =  𝑊 ) | 
						
							| 27 |  | dmeq | ⊢ ( 𝑤  =  𝑊  →  dom  𝑤  =  dom  𝑊 ) | 
						
							| 28 |  | eqidd | ⊢ ( 𝑤  =  𝑊  →  𝐷  =  𝐷 ) | 
						
							| 29 | 26 27 28 | f1eq123d | ⊢ ( 𝑤  =  𝑊  →  ( 𝑤 : dom  𝑤 –1-1→ 𝐷  ↔  𝑊 : dom  𝑊 –1-1→ 𝐷 ) ) | 
						
							| 30 | 29 | elrab | ⊢ ( 𝑊  ∈  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ↔  ( 𝑊  ∈  Word  𝐷  ∧  𝑊 : dom  𝑊 –1-1→ 𝐷 ) ) | 
						
							| 31 | 17 30 | sylib | ⊢ ( 𝜑  →  ( 𝑊  ∈  Word  𝐷  ∧  𝑊 : dom  𝑊 –1-1→ 𝐷 ) ) | 
						
							| 32 | 31 | simprd | ⊢ ( 𝜑  →  𝑊 : dom  𝑊 –1-1→ 𝐷 ) | 
						
							| 33 |  | f1cnv | ⊢ ( 𝑊 : dom  𝑊 –1-1→ 𝐷  →  ◡ 𝑊 : ran  𝑊 –1-1-onto→ dom  𝑊 ) | 
						
							| 34 |  | f1of | ⊢ ( ◡ 𝑊 : ran  𝑊 –1-1-onto→ dom  𝑊  →  ◡ 𝑊 : ran  𝑊 ⟶ dom  𝑊 ) | 
						
							| 35 | 32 33 34 | 3syl | ⊢ ( 𝜑  →  ◡ 𝑊 : ran  𝑊 ⟶ dom  𝑊 ) | 
						
							| 36 | 35 6 | ffvelcdmd | ⊢ ( 𝜑  →  ( ◡ 𝑊 ‘ 𝐽 )  ∈  dom  𝑊 ) | 
						
							| 37 |  | wrddm | ⊢ ( 𝑊  ∈  Word  𝐷  →  dom  𝑊  =  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 38 | 18 37 | syl | ⊢ ( 𝜑  →  dom  𝑊  =  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 39 | 36 38 | eleqtrd | ⊢ ( 𝜑  →  ( ◡ 𝑊 ‘ 𝐽 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 40 |  | fzofzp1 | ⊢ ( ( ◡ 𝑊 ‘ 𝐽 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 41 | 39 40 | syl | ⊢ ( 𝜑  →  ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 42 | 7 41 | eqeltrid | ⊢ ( 𝜑  →  𝐸  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 43 | 25 42 | sselid | ⊢ ( 𝜑  →  𝐸  ∈  ℕ0 ) | 
						
							| 44 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 45 | 43 44 | eleqtrdi | ⊢ ( 𝜑  →  𝐸  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 46 |  | fzoss1 | ⊢ ( 𝐸  ∈  ( ℤ≥ ‘ 0 )  →  ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) )  ⊆  ( 0 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) ) ) | 
						
							| 47 | 45 46 | syl | ⊢ ( 𝜑  →  ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) )  ⊆  ( 0 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) ) ) | 
						
							| 48 | 47 11 | sseldd | ⊢ ( 𝜑  →  ( ◡ 𝑈 ‘ 𝐾 )  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) ) ) | 
						
							| 49 | 1 3 23 24 48 | cycpmfv1 | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑈 ) ‘ ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) )  =  ( 𝑈 ‘ ( ( ◡ 𝑈 ‘ 𝐾 )  +  1 ) ) ) | 
						
							| 50 |  | f1f1orn | ⊢ ( 𝑈 : dom  𝑈 –1-1→ 𝐷  →  𝑈 : dom  𝑈 –1-1-onto→ ran  𝑈 ) | 
						
							| 51 | 24 50 | syl | ⊢ ( 𝜑  →  𝑈 : dom  𝑈 –1-1-onto→ ran  𝑈 ) | 
						
							| 52 |  | ssun1 | ⊢ ran  𝑊  ⊆  ( ran  𝑊  ∪  { 𝐼 } ) | 
						
							| 53 | 1 2 3 4 5 6 7 8 | cycpmco2rn | ⊢ ( 𝜑  →  ran  𝑈  =  ( ran  𝑊  ∪  { 𝐼 } ) ) | 
						
							| 54 | 52 53 | sseqtrrid | ⊢ ( 𝜑  →  ran  𝑊  ⊆  ran  𝑈 ) | 
						
							| 55 | 54 | sselda | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ran  𝑊 )  →  𝐾  ∈  ran  𝑈 ) | 
						
							| 56 |  | f1ocnvfv2 | ⊢ ( ( 𝑈 : dom  𝑈 –1-1-onto→ ran  𝑈  ∧  𝐾  ∈  ran  𝑈 )  →  ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) )  =  𝐾 ) | 
						
							| 57 | 51 55 56 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ran  𝑊 )  →  ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) )  =  𝐾 ) | 
						
							| 58 | 9 57 | mpdan | ⊢ ( 𝜑  →  ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) )  =  𝐾 ) | 
						
							| 59 | 58 | fveq2d | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑈 ) ‘ ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) )  =  ( ( 𝑀 ‘ 𝑈 ) ‘ 𝐾 ) ) | 
						
							| 60 | 8 | a1i | ⊢ ( 𝜑  →  𝑈  =  ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 ) ) | 
						
							| 61 |  | fzossz | ⊢ ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) )  ⊆  ℤ | 
						
							| 62 | 61 11 | sselid | ⊢ ( 𝜑  →  ( ◡ 𝑈 ‘ 𝐾 )  ∈  ℤ ) | 
						
							| 63 | 62 | zcnd | ⊢ ( 𝜑  →  ( ◡ 𝑈 ‘ 𝐾 )  ∈  ℂ ) | 
						
							| 64 | 43 | nn0cnd | ⊢ ( 𝜑  →  𝐸  ∈  ℂ ) | 
						
							| 65 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 66 | 63 64 65 | nppcan3d | ⊢ ( 𝜑  →  ( ( ( ◡ 𝑈 ‘ 𝐾 )  −  𝐸 )  +  ( 1  +  𝐸 ) )  =  ( ( ◡ 𝑈 ‘ 𝐾 )  +  1 ) ) | 
						
							| 67 | 66 | eqcomd | ⊢ ( 𝜑  →  ( ( ◡ 𝑈 ‘ 𝐾 )  +  1 )  =  ( ( ( ◡ 𝑈 ‘ 𝐾 )  −  𝐸 )  +  ( 1  +  𝐸 ) ) ) | 
						
							| 68 | 60 67 | fveq12d | ⊢ ( 𝜑  →  ( 𝑈 ‘ ( ( ◡ 𝑈 ‘ 𝐾 )  +  1 ) )  =  ( ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 ) ‘ ( ( ( ◡ 𝑈 ‘ 𝐾 )  −  𝐸 )  +  ( 1  +  𝐸 ) ) ) ) | 
						
							| 69 | 49 59 68 | 3eqtr3d | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑈 ) ‘ 𝐾 )  =  ( ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 ) ‘ ( ( ( ◡ 𝑈 ‘ 𝐾 )  −  𝐸 )  +  ( 1  +  𝐸 ) ) ) ) | 
						
							| 70 | 63 64 | npcand | ⊢ ( 𝜑  →  ( ( ( ◡ 𝑈 ‘ 𝐾 )  −  𝐸 )  +  𝐸 )  =  ( ◡ 𝑈 ‘ 𝐾 ) ) | 
						
							| 71 | 70 | fveq2d | ⊢ ( 𝜑  →  ( 𝑊 ‘ ( ( ( ◡ 𝑈 ‘ 𝐾 )  −  𝐸 )  +  𝐸 ) )  =  ( 𝑊 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) ) | 
						
							| 72 |  | nn0fz0 | ⊢ ( 𝐸  ∈  ℕ0  ↔  𝐸  ∈  ( 0 ... 𝐸 ) ) | 
						
							| 73 | 43 72 | sylib | ⊢ ( 𝜑  →  𝐸  ∈  ( 0 ... 𝐸 ) ) | 
						
							| 74 |  | lencl | ⊢ ( 𝑊  ∈  Word  𝐷  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 75 | 18 74 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 76 | 75 | nn0cnd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  ∈  ℂ ) | 
						
							| 77 |  | ovexd | ⊢ ( 𝜑  →  ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 )  ∈  V ) | 
						
							| 78 | 7 77 | eqeltrid | ⊢ ( 𝜑  →  𝐸  ∈  V ) | 
						
							| 79 |  | splval | ⊢ ( ( 𝑊  ∈  dom  𝑀  ∧  ( 𝐸  ∈  V  ∧  𝐸  ∈  V  ∧  〈“ 𝐼 ”〉  ∈  Word  𝐷 ) )  →  ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 )  =  ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ) | 
						
							| 80 | 4 78 78 20 79 | syl13anc | ⊢ ( 𝜑  →  ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 )  =  ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ) | 
						
							| 81 | 8 80 | eqtrid | ⊢ ( 𝜑  →  𝑈  =  ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ) | 
						
							| 82 | 81 | fveq2d | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) | 
						
							| 83 |  | pfxcl | ⊢ ( 𝑊  ∈  Word  𝐷  →  ( 𝑊  prefix  𝐸 )  ∈  Word  𝐷 ) | 
						
							| 84 | 18 83 | syl | ⊢ ( 𝜑  →  ( 𝑊  prefix  𝐸 )  ∈  Word  𝐷 ) | 
						
							| 85 |  | ccatcl | ⊢ ( ( ( 𝑊  prefix  𝐸 )  ∈  Word  𝐷  ∧  〈“ 𝐼 ”〉  ∈  Word  𝐷 )  →  ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ∈  Word  𝐷 ) | 
						
							| 86 | 84 20 85 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ∈  Word  𝐷 ) | 
						
							| 87 |  | swrdcl | ⊢ ( 𝑊  ∈  Word  𝐷  →  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 )  ∈  Word  𝐷 ) | 
						
							| 88 | 18 87 | syl | ⊢ ( 𝜑  →  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 )  ∈  Word  𝐷 ) | 
						
							| 89 |  | ccatlen | ⊢ ( ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ∈  Word  𝐷  ∧  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 )  ∈  Word  𝐷 )  →  ( ♯ ‘ ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) )  =  ( ( ♯ ‘ ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) )  +  ( ♯ ‘ ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) | 
						
							| 90 | 86 88 89 | syl2anc | ⊢ ( 𝜑  →  ( ♯ ‘ ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) )  =  ( ( ♯ ‘ ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) )  +  ( ♯ ‘ ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ) ) | 
						
							| 91 |  | ccatws1len | ⊢ ( ( 𝑊  prefix  𝐸 )  ∈  Word  𝐷  →  ( ♯ ‘ ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) )  =  ( ( ♯ ‘ ( 𝑊  prefix  𝐸 ) )  +  1 ) ) | 
						
							| 92 | 18 83 91 | 3syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) )  =  ( ( ♯ ‘ ( 𝑊  prefix  𝐸 ) )  +  1 ) ) | 
						
							| 93 |  | pfxlen | ⊢ ( ( 𝑊  ∈  Word  𝐷  ∧  𝐸  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ♯ ‘ ( 𝑊  prefix  𝐸 ) )  =  𝐸 ) | 
						
							| 94 | 18 42 93 | syl2anc | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑊  prefix  𝐸 ) )  =  𝐸 ) | 
						
							| 95 | 94 | oveq1d | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( 𝑊  prefix  𝐸 ) )  +  1 )  =  ( 𝐸  +  1 ) ) | 
						
							| 96 | 92 95 | eqtrd | ⊢ ( 𝜑  →  ( ♯ ‘ ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) )  =  ( 𝐸  +  1 ) ) | 
						
							| 97 |  | nn0fz0 | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ↔  ( ♯ ‘ 𝑊 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 98 | 75 97 | sylib | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 99 |  | swrdlen | ⊢ ( ( 𝑊  ∈  Word  𝐷  ∧  𝐸  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  ( ♯ ‘ 𝑊 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ♯ ‘ ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) )  =  ( ( ♯ ‘ 𝑊 )  −  𝐸 ) ) | 
						
							| 100 | 18 42 98 99 | syl3anc | ⊢ ( 𝜑  →  ( ♯ ‘ ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) )  =  ( ( ♯ ‘ 𝑊 )  −  𝐸 ) ) | 
						
							| 101 | 96 100 | oveq12d | ⊢ ( 𝜑  →  ( ( ♯ ‘ ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 ) )  +  ( ♯ ‘ ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) )  =  ( ( 𝐸  +  1 )  +  ( ( ♯ ‘ 𝑊 )  −  𝐸 ) ) ) | 
						
							| 102 | 82 90 101 | 3eqtrd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑈 )  =  ( ( 𝐸  +  1 )  +  ( ( ♯ ‘ 𝑊 )  −  𝐸 ) ) ) | 
						
							| 103 | 43 | nn0zd | ⊢ ( 𝜑  →  𝐸  ∈  ℤ ) | 
						
							| 104 | 103 | peano2zd | ⊢ ( 𝜑  →  ( 𝐸  +  1 )  ∈  ℤ ) | 
						
							| 105 | 104 | zcnd | ⊢ ( 𝜑  →  ( 𝐸  +  1 )  ∈  ℂ ) | 
						
							| 106 | 105 76 64 | addsubassd | ⊢ ( 𝜑  →  ( ( ( 𝐸  +  1 )  +  ( ♯ ‘ 𝑊 ) )  −  𝐸 )  =  ( ( 𝐸  +  1 )  +  ( ( ♯ ‘ 𝑊 )  −  𝐸 ) ) ) | 
						
							| 107 | 64 65 76 | addassd | ⊢ ( 𝜑  →  ( ( 𝐸  +  1 )  +  ( ♯ ‘ 𝑊 ) )  =  ( 𝐸  +  ( 1  +  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 108 | 107 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝐸  +  1 )  +  ( ♯ ‘ 𝑊 ) )  −  𝐸 )  =  ( ( 𝐸  +  ( 1  +  ( ♯ ‘ 𝑊 ) ) )  −  𝐸 ) ) | 
						
							| 109 | 102 106 108 | 3eqtr2d | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑈 )  =  ( ( 𝐸  +  ( 1  +  ( ♯ ‘ 𝑊 ) ) )  −  𝐸 ) ) | 
						
							| 110 | 65 76 | addcld | ⊢ ( 𝜑  →  ( 1  +  ( ♯ ‘ 𝑊 ) )  ∈  ℂ ) | 
						
							| 111 | 64 110 | pncan2d | ⊢ ( 𝜑  →  ( ( 𝐸  +  ( 1  +  ( ♯ ‘ 𝑊 ) ) )  −  𝐸 )  =  ( 1  +  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 112 | 65 76 | addcomd | ⊢ ( 𝜑  →  ( 1  +  ( ♯ ‘ 𝑊 ) )  =  ( ( ♯ ‘ 𝑊 )  +  1 ) ) | 
						
							| 113 | 109 111 112 | 3eqtrd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑈 )  =  ( ( ♯ ‘ 𝑊 )  +  1 ) ) | 
						
							| 114 | 76 65 113 | mvrraddd | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑈 )  −  1 )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 115 | 114 | oveq2d | ⊢ ( 𝜑  →  ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) )  =  ( 𝐸 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 116 | 11 115 | eleqtrd | ⊢ ( 𝜑  →  ( ◡ 𝑈 ‘ 𝐾 )  ∈  ( 𝐸 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 117 |  | fzosubel | ⊢ ( ( ( ◡ 𝑈 ‘ 𝐾 )  ∈  ( 𝐸 ..^ ( ♯ ‘ 𝑊 ) )  ∧  𝐸  ∈  ℤ )  →  ( ( ◡ 𝑈 ‘ 𝐾 )  −  𝐸 )  ∈  ( ( 𝐸  −  𝐸 ) ..^ ( ( ♯ ‘ 𝑊 )  −  𝐸 ) ) ) | 
						
							| 118 | 116 103 117 | syl2anc | ⊢ ( 𝜑  →  ( ( ◡ 𝑈 ‘ 𝐾 )  −  𝐸 )  ∈  ( ( 𝐸  −  𝐸 ) ..^ ( ( ♯ ‘ 𝑊 )  −  𝐸 ) ) ) | 
						
							| 119 | 64 | subidd | ⊢ ( 𝜑  →  ( 𝐸  −  𝐸 )  =  0 ) | 
						
							| 120 | 119 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐸  −  𝐸 ) ..^ ( ( ♯ ‘ 𝑊 )  −  𝐸 ) )  =  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  𝐸 ) ) ) | 
						
							| 121 | 118 120 | eleqtrd | ⊢ ( 𝜑  →  ( ( ◡ 𝑈 ‘ 𝐾 )  −  𝐸 )  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  𝐸 ) ) ) | 
						
							| 122 | 65 64 | addcomd | ⊢ ( 𝜑  →  ( 1  +  𝐸 )  =  ( 𝐸  +  1 ) ) | 
						
							| 123 |  | s1len | ⊢ ( ♯ ‘ 〈“ 𝐼 ”〉 )  =  1 | 
						
							| 124 | 123 | oveq2i | ⊢ ( 𝐸  +  ( ♯ ‘ 〈“ 𝐼 ”〉 ) )  =  ( 𝐸  +  1 ) | 
						
							| 125 | 122 124 | eqtr4di | ⊢ ( 𝜑  →  ( 1  +  𝐸 )  =  ( 𝐸  +  ( ♯ ‘ 〈“ 𝐼 ”〉 ) ) ) | 
						
							| 126 | 18 73 42 20 121 125 | splfv3 | ⊢ ( 𝜑  →  ( ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 ) ‘ ( ( ( ◡ 𝑈 ‘ 𝐾 )  −  𝐸 )  +  ( 1  +  𝐸 ) ) )  =  ( 𝑊 ‘ ( ( ( ◡ 𝑈 ‘ 𝐾 )  −  𝐸 )  +  𝐸 ) ) ) | 
						
							| 127 | 114 | oveq1d | ⊢ ( 𝜑  →  ( ( ( ♯ ‘ 𝑈 )  −  1 )  −  1 )  =  ( ( ♯ ‘ 𝑊 )  −  1 ) ) | 
						
							| 128 | 127 | oveq2d | ⊢ ( 𝜑  →  ( 𝐸 ..^ ( ( ( ♯ ‘ 𝑈 )  −  1 )  −  1 ) )  =  ( 𝐸 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 129 |  | fzoss1 | ⊢ ( 𝐸  ∈  ( ℤ≥ ‘ 0 )  →  ( 𝐸 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) )  ⊆  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 130 | 45 129 | syl | ⊢ ( 𝜑  →  ( 𝐸 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) )  ⊆  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 131 | 128 130 | eqsstrd | ⊢ ( 𝜑  →  ( 𝐸 ..^ ( ( ( ♯ ‘ 𝑈 )  −  1 )  −  1 ) )  ⊆  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 132 |  | f1ocnvdm | ⊢ ( ( 𝑈 : dom  𝑈 –1-1-onto→ ran  𝑈  ∧  𝐾  ∈  ran  𝑈 )  →  ( ◡ 𝑈 ‘ 𝐾 )  ∈  dom  𝑈 ) | 
						
							| 133 | 51 55 132 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ran  𝑊 )  →  ( ◡ 𝑈 ‘ 𝐾 )  ∈  dom  𝑈 ) | 
						
							| 134 | 9 133 | mpdan | ⊢ ( 𝜑  →  ( ◡ 𝑈 ‘ 𝐾 )  ∈  dom  𝑈 ) | 
						
							| 135 | 75 | nn0zd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  ∈  ℤ ) | 
						
							| 136 | 135 | peano2zd | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑊 )  +  1 )  ∈  ℤ ) | 
						
							| 137 |  | elfzonn0 | ⊢ ( ( ◡ 𝑊 ‘ 𝐽 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( ◡ 𝑊 ‘ 𝐽 )  ∈  ℕ0 ) | 
						
							| 138 |  | nn0p1nn | ⊢ ( ( ◡ 𝑊 ‘ 𝐽 )  ∈  ℕ0  →  ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 )  ∈  ℕ ) | 
						
							| 139 | 39 137 138 | 3syl | ⊢ ( 𝜑  →  ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 )  ∈  ℕ ) | 
						
							| 140 | 7 139 | eqeltrid | ⊢ ( 𝜑  →  𝐸  ∈  ℕ ) | 
						
							| 141 | 140 | nnred | ⊢ ( 𝜑  →  𝐸  ∈  ℝ ) | 
						
							| 142 | 135 | zred | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  ∈  ℝ ) | 
						
							| 143 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 144 |  | elfzle2 | ⊢ ( 𝐸  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  →  𝐸  ≤  ( ♯ ‘ 𝑊 ) ) | 
						
							| 145 | 42 144 | syl | ⊢ ( 𝜑  →  𝐸  ≤  ( ♯ ‘ 𝑊 ) ) | 
						
							| 146 | 141 142 143 145 | leadd1dd | ⊢ ( 𝜑  →  ( 𝐸  +  1 )  ≤  ( ( ♯ ‘ 𝑊 )  +  1 ) ) | 
						
							| 147 |  | eluz2 | ⊢ ( ( ( ♯ ‘ 𝑊 )  +  1 )  ∈  ( ℤ≥ ‘ ( 𝐸  +  1 ) )  ↔  ( ( 𝐸  +  1 )  ∈  ℤ  ∧  ( ( ♯ ‘ 𝑊 )  +  1 )  ∈  ℤ  ∧  ( 𝐸  +  1 )  ≤  ( ( ♯ ‘ 𝑊 )  +  1 ) ) ) | 
						
							| 148 | 104 136 146 147 | syl3anbrc | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑊 )  +  1 )  ∈  ( ℤ≥ ‘ ( 𝐸  +  1 ) ) ) | 
						
							| 149 |  | fzoss2 | ⊢ ( ( ( ♯ ‘ 𝑊 )  +  1 )  ∈  ( ℤ≥ ‘ ( 𝐸  +  1 ) )  →  ( 0 ..^ ( 𝐸  +  1 ) )  ⊆  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  +  1 ) ) ) | 
						
							| 150 | 148 149 | syl | ⊢ ( 𝜑  →  ( 0 ..^ ( 𝐸  +  1 ) )  ⊆  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  +  1 ) ) ) | 
						
							| 151 |  | fzonn0p1 | ⊢ ( 𝐸  ∈  ℕ0  →  𝐸  ∈  ( 0 ..^ ( 𝐸  +  1 ) ) ) | 
						
							| 152 | 43 151 | syl | ⊢ ( 𝜑  →  𝐸  ∈  ( 0 ..^ ( 𝐸  +  1 ) ) ) | 
						
							| 153 | 150 152 | sseldd | ⊢ ( 𝜑  →  𝐸  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  +  1 ) ) ) | 
						
							| 154 | 113 | oveq2d | ⊢ ( 𝜑  →  ( 0 ..^ ( ♯ ‘ 𝑈 ) )  =  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  +  1 ) ) ) | 
						
							| 155 | 153 154 | eleqtrrd | ⊢ ( 𝜑  →  𝐸  ∈  ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ) | 
						
							| 156 |  | wrddm | ⊢ ( 𝑈  ∈  Word  𝐷  →  dom  𝑈  =  ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ) | 
						
							| 157 | 23 156 | syl | ⊢ ( 𝜑  →  dom  𝑈  =  ( 0 ..^ ( ♯ ‘ 𝑈 ) ) ) | 
						
							| 158 | 155 157 | eleqtrrd | ⊢ ( 𝜑  →  𝐸  ∈  dom  𝑈 ) | 
						
							| 159 | 1 2 3 4 5 6 7 8 | cycpmco2lem2 | ⊢ ( 𝜑  →  ( 𝑈 ‘ 𝐸 )  =  𝐼 ) | 
						
							| 160 | 10 58 159 | 3netr4d | ⊢ ( 𝜑  →  ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) )  ≠  ( 𝑈 ‘ 𝐸 ) ) | 
						
							| 161 |  | f1fveq | ⊢ ( ( 𝑈 : dom  𝑈 –1-1→ 𝐷  ∧  ( ( ◡ 𝑈 ‘ 𝐾 )  ∈  dom  𝑈  ∧  𝐸  ∈  dom  𝑈 ) )  →  ( ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) )  =  ( 𝑈 ‘ 𝐸 )  ↔  ( ◡ 𝑈 ‘ 𝐾 )  =  𝐸 ) ) | 
						
							| 162 | 161 | necon3bid | ⊢ ( ( 𝑈 : dom  𝑈 –1-1→ 𝐷  ∧  ( ( ◡ 𝑈 ‘ 𝐾 )  ∈  dom  𝑈  ∧  𝐸  ∈  dom  𝑈 ) )  →  ( ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) )  ≠  ( 𝑈 ‘ 𝐸 )  ↔  ( ◡ 𝑈 ‘ 𝐾 )  ≠  𝐸 ) ) | 
						
							| 163 | 162 | biimp3a | ⊢ ( ( 𝑈 : dom  𝑈 –1-1→ 𝐷  ∧  ( ( ◡ 𝑈 ‘ 𝐾 )  ∈  dom  𝑈  ∧  𝐸  ∈  dom  𝑈 )  ∧  ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) )  ≠  ( 𝑈 ‘ 𝐸 ) )  →  ( ◡ 𝑈 ‘ 𝐾 )  ≠  𝐸 ) | 
						
							| 164 | 24 134 158 160 163 | syl121anc | ⊢ ( 𝜑  →  ( ◡ 𝑈 ‘ 𝐾 )  ≠  𝐸 ) | 
						
							| 165 |  | fzom1ne1 | ⊢ ( ( ( ◡ 𝑈 ‘ 𝐾 )  ∈  ( 𝐸 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) )  ∧  ( ◡ 𝑈 ‘ 𝐾 )  ≠  𝐸 )  →  ( ( ◡ 𝑈 ‘ 𝐾 )  −  1 )  ∈  ( 𝐸 ..^ ( ( ( ♯ ‘ 𝑈 )  −  1 )  −  1 ) ) ) | 
						
							| 166 | 11 164 165 | syl2anc | ⊢ ( 𝜑  →  ( ( ◡ 𝑈 ‘ 𝐾 )  −  1 )  ∈  ( 𝐸 ..^ ( ( ( ♯ ‘ 𝑈 )  −  1 )  −  1 ) ) ) | 
						
							| 167 | 131 166 | sseldd | ⊢ ( 𝜑  →  ( ( ◡ 𝑈 ‘ 𝐾 )  −  1 )  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 168 | 1 3 18 32 167 | cycpmfv1 | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑊 ) ‘ ( 𝑊 ‘ ( ( ◡ 𝑈 ‘ 𝐾 )  −  1 ) ) )  =  ( 𝑊 ‘ ( ( ( ◡ 𝑈 ‘ 𝐾 )  −  1 )  +  1 ) ) ) | 
						
							| 169 | 63 65 64 | subsub4d | ⊢ ( 𝜑  →  ( ( ( ◡ 𝑈 ‘ 𝐾 )  −  1 )  −  𝐸 )  =  ( ( ◡ 𝑈 ‘ 𝐾 )  −  ( 1  +  𝐸 ) ) ) | 
						
							| 170 | 169 | oveq1d | ⊢ ( 𝜑  →  ( ( ( ( ◡ 𝑈 ‘ 𝐾 )  −  1 )  −  𝐸 )  +  ( 1  +  𝐸 ) )  =  ( ( ( ◡ 𝑈 ‘ 𝐾 )  −  ( 1  +  𝐸 ) )  +  ( 1  +  𝐸 ) ) ) | 
						
							| 171 | 65 64 | addcld | ⊢ ( 𝜑  →  ( 1  +  𝐸 )  ∈  ℂ ) | 
						
							| 172 | 63 171 | npcand | ⊢ ( 𝜑  →  ( ( ( ◡ 𝑈 ‘ 𝐾 )  −  ( 1  +  𝐸 ) )  +  ( 1  +  𝐸 ) )  =  ( ◡ 𝑈 ‘ 𝐾 ) ) | 
						
							| 173 | 170 172 | eqtr2d | ⊢ ( 𝜑  →  ( ◡ 𝑈 ‘ 𝐾 )  =  ( ( ( ( ◡ 𝑈 ‘ 𝐾 )  −  1 )  −  𝐸 )  +  ( 1  +  𝐸 ) ) ) | 
						
							| 174 | 60 173 | fveq12d | ⊢ ( 𝜑  →  ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) )  =  ( ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 ) ‘ ( ( ( ( ◡ 𝑈 ‘ 𝐾 )  −  1 )  −  𝐸 )  +  ( 1  +  𝐸 ) ) ) ) | 
						
							| 175 | 64 76 | pncan3d | ⊢ ( 𝜑  →  ( 𝐸  +  ( ( ♯ ‘ 𝑊 )  −  𝐸 ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 176 | 114 135 | eqeltrd | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑈 )  −  1 )  ∈  ℤ ) | 
						
							| 177 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 178 | 176 177 | zsubcld | ⊢ ( 𝜑  →  ( ( ( ♯ ‘ 𝑈 )  −  1 )  −  1 )  ∈  ℤ ) | 
						
							| 179 | 178 | zred | ⊢ ( 𝜑  →  ( ( ( ♯ ‘ 𝑈 )  −  1 )  −  1 )  ∈  ℝ ) | 
						
							| 180 | 114 142 | eqeltrd | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑈 )  −  1 )  ∈  ℝ ) | 
						
							| 181 | 180 | ltm1d | ⊢ ( 𝜑  →  ( ( ( ♯ ‘ 𝑈 )  −  1 )  −  1 )  <  ( ( ♯ ‘ 𝑈 )  −  1 ) ) | 
						
							| 182 | 181 114 | breqtrd | ⊢ ( 𝜑  →  ( ( ( ♯ ‘ 𝑈 )  −  1 )  −  1 )  <  ( ♯ ‘ 𝑊 ) ) | 
						
							| 183 | 179 142 182 | ltled | ⊢ ( 𝜑  →  ( ( ( ♯ ‘ 𝑈 )  −  1 )  −  1 )  ≤  ( ♯ ‘ 𝑊 ) ) | 
						
							| 184 |  | eluz1 | ⊢ ( ( ( ( ♯ ‘ 𝑈 )  −  1 )  −  1 )  ∈  ℤ  →  ( ( ♯ ‘ 𝑊 )  ∈  ( ℤ≥ ‘ ( ( ( ♯ ‘ 𝑈 )  −  1 )  −  1 ) )  ↔  ( ( ♯ ‘ 𝑊 )  ∈  ℤ  ∧  ( ( ( ♯ ‘ 𝑈 )  −  1 )  −  1 )  ≤  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 185 | 184 | biimpar | ⊢ ( ( ( ( ( ♯ ‘ 𝑈 )  −  1 )  −  1 )  ∈  ℤ  ∧  ( ( ♯ ‘ 𝑊 )  ∈  ℤ  ∧  ( ( ( ♯ ‘ 𝑈 )  −  1 )  −  1 )  ≤  ( ♯ ‘ 𝑊 ) ) )  →  ( ♯ ‘ 𝑊 )  ∈  ( ℤ≥ ‘ ( ( ( ♯ ‘ 𝑈 )  −  1 )  −  1 ) ) ) | 
						
							| 186 | 178 135 183 185 | syl12anc | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  ∈  ( ℤ≥ ‘ ( ( ( ♯ ‘ 𝑈 )  −  1 )  −  1 ) ) ) | 
						
							| 187 | 175 186 | eqeltrd | ⊢ ( 𝜑  →  ( 𝐸  +  ( ( ♯ ‘ 𝑊 )  −  𝐸 ) )  ∈  ( ℤ≥ ‘ ( ( ( ♯ ‘ 𝑈 )  −  1 )  −  1 ) ) ) | 
						
							| 188 |  | fzoss2 | ⊢ ( ( 𝐸  +  ( ( ♯ ‘ 𝑊 )  −  𝐸 ) )  ∈  ( ℤ≥ ‘ ( ( ( ♯ ‘ 𝑈 )  −  1 )  −  1 ) )  →  ( 𝐸 ..^ ( ( ( ♯ ‘ 𝑈 )  −  1 )  −  1 ) )  ⊆  ( 𝐸 ..^ ( 𝐸  +  ( ( ♯ ‘ 𝑊 )  −  𝐸 ) ) ) ) | 
						
							| 189 | 187 188 | syl | ⊢ ( 𝜑  →  ( 𝐸 ..^ ( ( ( ♯ ‘ 𝑈 )  −  1 )  −  1 ) )  ⊆  ( 𝐸 ..^ ( 𝐸  +  ( ( ♯ ‘ 𝑊 )  −  𝐸 ) ) ) ) | 
						
							| 190 | 189 166 | sseldd | ⊢ ( 𝜑  →  ( ( ◡ 𝑈 ‘ 𝐾 )  −  1 )  ∈  ( 𝐸 ..^ ( 𝐸  +  ( ( ♯ ‘ 𝑊 )  −  𝐸 ) ) ) ) | 
						
							| 191 | 135 103 | zsubcld | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑊 )  −  𝐸 )  ∈  ℤ ) | 
						
							| 192 |  | fzosubel3 | ⊢ ( ( ( ( ◡ 𝑈 ‘ 𝐾 )  −  1 )  ∈  ( 𝐸 ..^ ( 𝐸  +  ( ( ♯ ‘ 𝑊 )  −  𝐸 ) ) )  ∧  ( ( ♯ ‘ 𝑊 )  −  𝐸 )  ∈  ℤ )  →  ( ( ( ◡ 𝑈 ‘ 𝐾 )  −  1 )  −  𝐸 )  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  𝐸 ) ) ) | 
						
							| 193 | 190 191 192 | syl2anc | ⊢ ( 𝜑  →  ( ( ( ◡ 𝑈 ‘ 𝐾 )  −  1 )  −  𝐸 )  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  𝐸 ) ) ) | 
						
							| 194 | 18 73 42 20 193 125 | splfv3 | ⊢ ( 𝜑  →  ( ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 ) ‘ ( ( ( ( ◡ 𝑈 ‘ 𝐾 )  −  1 )  −  𝐸 )  +  ( 1  +  𝐸 ) ) )  =  ( 𝑊 ‘ ( ( ( ( ◡ 𝑈 ‘ 𝐾 )  −  1 )  −  𝐸 )  +  𝐸 ) ) ) | 
						
							| 195 | 63 65 | subcld | ⊢ ( 𝜑  →  ( ( ◡ 𝑈 ‘ 𝐾 )  −  1 )  ∈  ℂ ) | 
						
							| 196 | 195 64 | npcand | ⊢ ( 𝜑  →  ( ( ( ( ◡ 𝑈 ‘ 𝐾 )  −  1 )  −  𝐸 )  +  𝐸 )  =  ( ( ◡ 𝑈 ‘ 𝐾 )  −  1 ) ) | 
						
							| 197 | 196 | fveq2d | ⊢ ( 𝜑  →  ( 𝑊 ‘ ( ( ( ( ◡ 𝑈 ‘ 𝐾 )  −  1 )  −  𝐸 )  +  𝐸 ) )  =  ( 𝑊 ‘ ( ( ◡ 𝑈 ‘ 𝐾 )  −  1 ) ) ) | 
						
							| 198 | 174 194 197 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) )  =  ( 𝑊 ‘ ( ( ◡ 𝑈 ‘ 𝐾 )  −  1 ) ) ) | 
						
							| 199 | 198 58 | eqtr3d | ⊢ ( 𝜑  →  ( 𝑊 ‘ ( ( ◡ 𝑈 ‘ 𝐾 )  −  1 ) )  =  𝐾 ) | 
						
							| 200 | 199 | fveq2d | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑊 ) ‘ ( 𝑊 ‘ ( ( ◡ 𝑈 ‘ 𝐾 )  −  1 ) ) )  =  ( ( 𝑀 ‘ 𝑊 ) ‘ 𝐾 ) ) | 
						
							| 201 | 63 65 | npcand | ⊢ ( 𝜑  →  ( ( ( ◡ 𝑈 ‘ 𝐾 )  −  1 )  +  1 )  =  ( ◡ 𝑈 ‘ 𝐾 ) ) | 
						
							| 202 | 201 | fveq2d | ⊢ ( 𝜑  →  ( 𝑊 ‘ ( ( ( ◡ 𝑈 ‘ 𝐾 )  −  1 )  +  1 ) )  =  ( 𝑊 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) ) | 
						
							| 203 | 168 200 202 | 3eqtr3d | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑊 ) ‘ 𝐾 )  =  ( 𝑊 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) ) | 
						
							| 204 | 71 126 203 | 3eqtr4rd | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑊 ) ‘ 𝐾 )  =  ( ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 ) ‘ ( ( ( ◡ 𝑈 ‘ 𝐾 )  −  𝐸 )  +  ( 1  +  𝐸 ) ) ) ) | 
						
							| 205 | 69 204 | eqtr4d | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑈 ) ‘ 𝐾 )  =  ( ( 𝑀 ‘ 𝑊 ) ‘ 𝐾 ) ) |