| Step |
Hyp |
Ref |
Expression |
| 1 |
|
splfv3.s |
⊢ ( 𝜑 → 𝑆 ∈ Word 𝐴 ) |
| 2 |
|
splfv3.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 0 ... 𝑇 ) ) |
| 3 |
|
splfv3.t |
⊢ ( 𝜑 → 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) |
| 4 |
|
splfv3.r |
⊢ ( 𝜑 → 𝑅 ∈ Word 𝐴 ) |
| 5 |
|
splfv3.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) − 𝑇 ) ) ) |
| 6 |
|
splfv3.k |
⊢ ( 𝜑 → 𝐾 = ( 𝐹 + ( ♯ ‘ 𝑅 ) ) ) |
| 7 |
|
splval |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝐹 ∈ ( 0 ... 𝑇 ) ∧ 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ∧ 𝑅 ∈ Word 𝐴 ) ) → ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) = ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) |
| 8 |
1 2 3 4 7
|
syl13anc |
⊢ ( 𝜑 → ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) = ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) |
| 9 |
|
elfzuz3 |
⊢ ( 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) → ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 𝑇 ) ) |
| 10 |
|
fzss2 |
⊢ ( ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 𝑇 ) → ( 0 ... 𝑇 ) ⊆ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) |
| 11 |
3 9 10
|
3syl |
⊢ ( 𝜑 → ( 0 ... 𝑇 ) ⊆ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) |
| 12 |
11 2
|
sseldd |
⊢ ( 𝜑 → 𝐹 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) |
| 13 |
|
pfxlen |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) = 𝐹 ) |
| 14 |
1 12 13
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) = 𝐹 ) |
| 15 |
14
|
oveq1d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) + ( ♯ ‘ 𝑅 ) ) = ( 𝐹 + ( ♯ ‘ 𝑅 ) ) ) |
| 16 |
|
pfxcl |
⊢ ( 𝑆 ∈ Word 𝐴 → ( 𝑆 prefix 𝐹 ) ∈ Word 𝐴 ) |
| 17 |
1 16
|
syl |
⊢ ( 𝜑 → ( 𝑆 prefix 𝐹 ) ∈ Word 𝐴 ) |
| 18 |
|
ccatlen |
⊢ ( ( ( 𝑆 prefix 𝐹 ) ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴 ) → ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) = ( ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) + ( ♯ ‘ 𝑅 ) ) ) |
| 19 |
17 4 18
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) = ( ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) + ( ♯ ‘ 𝑅 ) ) ) |
| 20 |
15 19 6
|
3eqtr4rd |
⊢ ( 𝜑 → 𝐾 = ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) ) |
| 21 |
20
|
oveq2d |
⊢ ( 𝜑 → ( 𝑋 + 𝐾 ) = ( 𝑋 + ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) ) ) |
| 22 |
8 21
|
fveq12d |
⊢ ( 𝜑 → ( ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) ‘ ( 𝑋 + 𝐾 ) ) = ( ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ‘ ( 𝑋 + ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) ) ) ) |
| 23 |
|
ccatcl |
⊢ ( ( ( 𝑆 prefix 𝐹 ) ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴 ) → ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ∈ Word 𝐴 ) |
| 24 |
17 4 23
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ∈ Word 𝐴 ) |
| 25 |
|
swrdcl |
⊢ ( 𝑆 ∈ Word 𝐴 → ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ∈ Word 𝐴 ) |
| 26 |
1 25
|
syl |
⊢ ( 𝜑 → ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ∈ Word 𝐴 ) |
| 27 |
|
lencl |
⊢ ( 𝑆 ∈ Word 𝐴 → ( ♯ ‘ 𝑆 ) ∈ ℕ0 ) |
| 28 |
|
nn0fz0 |
⊢ ( ( ♯ ‘ 𝑆 ) ∈ ℕ0 ↔ ( ♯ ‘ 𝑆 ) ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) |
| 29 |
27 28
|
sylib |
⊢ ( 𝑆 ∈ Word 𝐴 → ( ♯ ‘ 𝑆 ) ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) |
| 30 |
1 29
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) |
| 31 |
|
swrdlen |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ∧ ( ♯ ‘ 𝑆 ) ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) = ( ( ♯ ‘ 𝑆 ) − 𝑇 ) ) |
| 32 |
1 3 30 31
|
syl3anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) = ( ( ♯ ‘ 𝑆 ) − 𝑇 ) ) |
| 33 |
32
|
oveq2d |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) = ( 0 ..^ ( ( ♯ ‘ 𝑆 ) − 𝑇 ) ) ) |
| 34 |
5 33
|
eleqtrrd |
⊢ ( 𝜑 → 𝑋 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) ) |
| 35 |
|
ccatval3 |
⊢ ( ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ∈ Word 𝐴 ∧ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ∈ Word 𝐴 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) ) → ( ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ‘ ( 𝑋 + ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) ) ) = ( ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ‘ 𝑋 ) ) |
| 36 |
24 26 34 35
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ‘ ( 𝑋 + ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) ) ) = ( ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ‘ 𝑋 ) ) |
| 37 |
|
swrdfv |
⊢ ( ( ( 𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ∧ ( ♯ ‘ 𝑆 ) ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ∧ 𝑋 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) − 𝑇 ) ) ) → ( ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ‘ 𝑋 ) = ( 𝑆 ‘ ( 𝑋 + 𝑇 ) ) ) |
| 38 |
1 3 30 5 37
|
syl31anc |
⊢ ( 𝜑 → ( ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ‘ 𝑋 ) = ( 𝑆 ‘ ( 𝑋 + 𝑇 ) ) ) |
| 39 |
22 36 38
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) ‘ ( 𝑋 + 𝐾 ) ) = ( 𝑆 ‘ ( 𝑋 + 𝑇 ) ) ) |