| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycpmco2.c | ⊢ 𝑀  =  ( toCyc ‘ 𝐷 ) | 
						
							| 2 |  | cycpmco2.s | ⊢ 𝑆  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 3 |  | cycpmco2.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑉 ) | 
						
							| 4 |  | cycpmco2.w | ⊢ ( 𝜑  →  𝑊  ∈  dom  𝑀 ) | 
						
							| 5 |  | cycpmco2.i | ⊢ ( 𝜑  →  𝐼  ∈  ( 𝐷  ∖  ran  𝑊 ) ) | 
						
							| 6 |  | cycpmco2.j | ⊢ ( 𝜑  →  𝐽  ∈  ran  𝑊 ) | 
						
							| 7 |  | cycpmco2.e | ⊢ 𝐸  =  ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 ) | 
						
							| 8 |  | cycpmco2.1 | ⊢ 𝑈  =  ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 ) | 
						
							| 9 |  | un23 | ⊢ ( ( ( 𝑊  “  ( 0 ..^ 𝐸 ) )  ∪  { 𝐼 } )  ∪  ( 𝑊  “  ( 𝐸 ..^ ( ♯ ‘ 𝑊 ) ) ) )  =  ( ( ( 𝑊  “  ( 0 ..^ 𝐸 ) )  ∪  ( 𝑊  “  ( 𝐸 ..^ ( ♯ ‘ 𝑊 ) ) ) )  ∪  { 𝐼 } ) | 
						
							| 10 |  | ovexd | ⊢ ( 𝜑  →  ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 )  ∈  V ) | 
						
							| 11 | 7 10 | eqeltrid | ⊢ ( 𝜑  →  𝐸  ∈  V ) | 
						
							| 12 | 5 | eldifad | ⊢ ( 𝜑  →  𝐼  ∈  𝐷 ) | 
						
							| 13 | 12 | s1cld | ⊢ ( 𝜑  →  〈“ 𝐼 ”〉  ∈  Word  𝐷 ) | 
						
							| 14 |  | splval | ⊢ ( ( 𝑊  ∈  dom  𝑀  ∧  ( 𝐸  ∈  V  ∧  𝐸  ∈  V  ∧  〈“ 𝐼 ”〉  ∈  Word  𝐷 ) )  →  ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 )  =  ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ) | 
						
							| 15 | 4 11 11 13 14 | syl13anc | ⊢ ( 𝜑  →  ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 )  =  ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ) | 
						
							| 16 | 8 15 | eqtrid | ⊢ ( 𝜑  →  𝑈  =  ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ) | 
						
							| 17 | 16 | rneqd | ⊢ ( 𝜑  →  ran  𝑈  =  ran  ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ) | 
						
							| 18 |  | ssrab2 | ⊢ { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ⊆  Word  𝐷 | 
						
							| 19 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 20 | 1 2 19 | tocycf | ⊢ ( 𝐷  ∈  𝑉  →  𝑀 : { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 21 | 3 20 | syl | ⊢ ( 𝜑  →  𝑀 : { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 22 | 21 | fdmd | ⊢ ( 𝜑  →  dom  𝑀  =  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ) | 
						
							| 23 | 4 22 | eleqtrd | ⊢ ( 𝜑  →  𝑊  ∈  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ) | 
						
							| 24 | 18 23 | sselid | ⊢ ( 𝜑  →  𝑊  ∈  Word  𝐷 ) | 
						
							| 25 |  | pfxcl | ⊢ ( 𝑊  ∈  Word  𝐷  →  ( 𝑊  prefix  𝐸 )  ∈  Word  𝐷 ) | 
						
							| 26 | 24 25 | syl | ⊢ ( 𝜑  →  ( 𝑊  prefix  𝐸 )  ∈  Word  𝐷 ) | 
						
							| 27 |  | ccatcl | ⊢ ( ( ( 𝑊  prefix  𝐸 )  ∈  Word  𝐷  ∧  〈“ 𝐼 ”〉  ∈  Word  𝐷 )  →  ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ∈  Word  𝐷 ) | 
						
							| 28 | 26 13 27 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ∈  Word  𝐷 ) | 
						
							| 29 |  | swrdcl | ⊢ ( 𝑊  ∈  Word  𝐷  →  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 )  ∈  Word  𝐷 ) | 
						
							| 30 | 24 29 | syl | ⊢ ( 𝜑  →  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 )  ∈  Word  𝐷 ) | 
						
							| 31 |  | ccatrn | ⊢ ( ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ∈  Word  𝐷  ∧  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 )  ∈  Word  𝐷 )  →  ran  ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) )  =  ( ran  ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ∪  ran  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ) | 
						
							| 32 | 28 30 31 | syl2anc | ⊢ ( 𝜑  →  ran  ( ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ++  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) )  =  ( ran  ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ∪  ran  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) ) ) | 
						
							| 33 |  | ccatrn | ⊢ ( ( ( 𝑊  prefix  𝐸 )  ∈  Word  𝐷  ∧  〈“ 𝐼 ”〉  ∈  Word  𝐷 )  →  ran  ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  =  ( ran  ( 𝑊  prefix  𝐸 )  ∪  ran  〈“ 𝐼 ”〉 ) ) | 
						
							| 34 | 26 13 33 | syl2anc | ⊢ ( 𝜑  →  ran  ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  =  ( ran  ( 𝑊  prefix  𝐸 )  ∪  ran  〈“ 𝐼 ”〉 ) ) | 
						
							| 35 |  | id | ⊢ ( 𝑤  =  𝑊  →  𝑤  =  𝑊 ) | 
						
							| 36 |  | dmeq | ⊢ ( 𝑤  =  𝑊  →  dom  𝑤  =  dom  𝑊 ) | 
						
							| 37 |  | eqidd | ⊢ ( 𝑤  =  𝑊  →  𝐷  =  𝐷 ) | 
						
							| 38 | 35 36 37 | f1eq123d | ⊢ ( 𝑤  =  𝑊  →  ( 𝑤 : dom  𝑤 –1-1→ 𝐷  ↔  𝑊 : dom  𝑊 –1-1→ 𝐷 ) ) | 
						
							| 39 | 38 | elrab | ⊢ ( 𝑊  ∈  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ↔  ( 𝑊  ∈  Word  𝐷  ∧  𝑊 : dom  𝑊 –1-1→ 𝐷 ) ) | 
						
							| 40 | 23 39 | sylib | ⊢ ( 𝜑  →  ( 𝑊  ∈  Word  𝐷  ∧  𝑊 : dom  𝑊 –1-1→ 𝐷 ) ) | 
						
							| 41 | 40 | simprd | ⊢ ( 𝜑  →  𝑊 : dom  𝑊 –1-1→ 𝐷 ) | 
						
							| 42 |  | f1cnv | ⊢ ( 𝑊 : dom  𝑊 –1-1→ 𝐷  →  ◡ 𝑊 : ran  𝑊 –1-1-onto→ dom  𝑊 ) | 
						
							| 43 |  | f1of | ⊢ ( ◡ 𝑊 : ran  𝑊 –1-1-onto→ dom  𝑊  →  ◡ 𝑊 : ran  𝑊 ⟶ dom  𝑊 ) | 
						
							| 44 | 41 42 43 | 3syl | ⊢ ( 𝜑  →  ◡ 𝑊 : ran  𝑊 ⟶ dom  𝑊 ) | 
						
							| 45 | 44 6 | ffvelcdmd | ⊢ ( 𝜑  →  ( ◡ 𝑊 ‘ 𝐽 )  ∈  dom  𝑊 ) | 
						
							| 46 |  | wrddm | ⊢ ( 𝑊  ∈  Word  𝐷  →  dom  𝑊  =  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 47 | 24 46 | syl | ⊢ ( 𝜑  →  dom  𝑊  =  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 48 | 45 47 | eleqtrd | ⊢ ( 𝜑  →  ( ◡ 𝑊 ‘ 𝐽 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 49 |  | fzofzp1 | ⊢ ( ( ◡ 𝑊 ‘ 𝐽 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 50 | 48 49 | syl | ⊢ ( 𝜑  →  ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 51 | 7 50 | eqeltrid | ⊢ ( 𝜑  →  𝐸  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 52 |  | pfxrn3 | ⊢ ( ( 𝑊  ∈  Word  𝐷  ∧  𝐸  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ran  ( 𝑊  prefix  𝐸 )  =  ( 𝑊  “  ( 0 ..^ 𝐸 ) ) ) | 
						
							| 53 | 24 51 52 | syl2anc | ⊢ ( 𝜑  →  ran  ( 𝑊  prefix  𝐸 )  =  ( 𝑊  “  ( 0 ..^ 𝐸 ) ) ) | 
						
							| 54 |  | s1rn | ⊢ ( 𝐼  ∈  𝐷  →  ran  〈“ 𝐼 ”〉  =  { 𝐼 } ) | 
						
							| 55 | 12 54 | syl | ⊢ ( 𝜑  →  ran  〈“ 𝐼 ”〉  =  { 𝐼 } ) | 
						
							| 56 | 53 55 | uneq12d | ⊢ ( 𝜑  →  ( ran  ( 𝑊  prefix  𝐸 )  ∪  ran  〈“ 𝐼 ”〉 )  =  ( ( 𝑊  “  ( 0 ..^ 𝐸 ) )  ∪  { 𝐼 } ) ) | 
						
							| 57 | 34 56 | eqtrd | ⊢ ( 𝜑  →  ran  ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  =  ( ( 𝑊  “  ( 0 ..^ 𝐸 ) )  ∪  { 𝐼 } ) ) | 
						
							| 58 |  | lencl | ⊢ ( 𝑊  ∈  Word  𝐷  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 59 |  | nn0fz0 | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ↔  ( ♯ ‘ 𝑊 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 60 | 59 | biimpi | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  →  ( ♯ ‘ 𝑊 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 61 | 24 58 60 | 3syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 62 |  | swrdrn3 | ⊢ ( ( 𝑊  ∈  Word  𝐷  ∧  𝐸  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  ( ♯ ‘ 𝑊 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ran  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 )  =  ( 𝑊  “  ( 𝐸 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 63 | 24 51 61 62 | syl3anc | ⊢ ( 𝜑  →  ran  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 )  =  ( 𝑊  “  ( 𝐸 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 64 | 57 63 | uneq12d | ⊢ ( 𝜑  →  ( ran  ( ( 𝑊  prefix  𝐸 )  ++  〈“ 𝐼 ”〉 )  ∪  ran  ( 𝑊  substr  〈 𝐸 ,  ( ♯ ‘ 𝑊 ) 〉 ) )  =  ( ( ( 𝑊  “  ( 0 ..^ 𝐸 ) )  ∪  { 𝐼 } )  ∪  ( 𝑊  “  ( 𝐸 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 65 | 17 32 64 | 3eqtrd | ⊢ ( 𝜑  →  ran  𝑈  =  ( ( ( 𝑊  “  ( 0 ..^ 𝐸 ) )  ∪  { 𝐼 } )  ∪  ( 𝑊  “  ( 𝐸 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 66 |  | fzosplit | ⊢ ( 𝐸  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  →  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  =  ( ( 0 ..^ 𝐸 )  ∪  ( 𝐸 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 67 | 51 66 | syl | ⊢ ( 𝜑  →  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  =  ( ( 0 ..^ 𝐸 )  ∪  ( 𝐸 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 68 | 67 | imaeq2d | ⊢ ( 𝜑  →  ( 𝑊  “  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  =  ( 𝑊  “  ( ( 0 ..^ 𝐸 )  ∪  ( 𝐸 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 69 |  | wrdf | ⊢ ( 𝑊  ∈  Word  𝐷  →  𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐷 ) | 
						
							| 70 | 24 69 | syl | ⊢ ( 𝜑  →  𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐷 ) | 
						
							| 71 | 70 | ffnd | ⊢ ( 𝜑  →  𝑊  Fn  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 72 |  | fnima | ⊢ ( 𝑊  Fn  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( 𝑊  “  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  =  ran  𝑊 ) | 
						
							| 73 | 71 72 | syl | ⊢ ( 𝜑  →  ( 𝑊  “  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  =  ran  𝑊 ) | 
						
							| 74 |  | elfzuz3 | ⊢ ( 𝐸  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  →  ( ♯ ‘ 𝑊 )  ∈  ( ℤ≥ ‘ 𝐸 ) ) | 
						
							| 75 |  | fzoss2 | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ( ℤ≥ ‘ 𝐸 )  →  ( 0 ..^ 𝐸 )  ⊆  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 76 | 51 74 75 | 3syl | ⊢ ( 𝜑  →  ( 0 ..^ 𝐸 )  ⊆  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 77 |  | fz0ssnn0 | ⊢ ( 0 ... ( ♯ ‘ 𝑊 ) )  ⊆  ℕ0 | 
						
							| 78 | 77 51 | sselid | ⊢ ( 𝜑  →  𝐸  ∈  ℕ0 ) | 
						
							| 79 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 80 | 78 79 | eleqtrdi | ⊢ ( 𝜑  →  𝐸  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 81 |  | fzoss1 | ⊢ ( 𝐸  ∈  ( ℤ≥ ‘ 0 )  →  ( 𝐸 ..^ ( ♯ ‘ 𝑊 ) )  ⊆  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 82 | 80 81 | syl | ⊢ ( 𝜑  →  ( 𝐸 ..^ ( ♯ ‘ 𝑊 ) )  ⊆  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 83 |  | unima | ⊢ ( ( 𝑊  Fn  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∧  ( 0 ..^ 𝐸 )  ⊆  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∧  ( 𝐸 ..^ ( ♯ ‘ 𝑊 ) )  ⊆  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊  “  ( ( 0 ..^ 𝐸 )  ∪  ( 𝐸 ..^ ( ♯ ‘ 𝑊 ) ) ) )  =  ( ( 𝑊  “  ( 0 ..^ 𝐸 ) )  ∪  ( 𝑊  “  ( 𝐸 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 84 | 71 76 82 83 | syl3anc | ⊢ ( 𝜑  →  ( 𝑊  “  ( ( 0 ..^ 𝐸 )  ∪  ( 𝐸 ..^ ( ♯ ‘ 𝑊 ) ) ) )  =  ( ( 𝑊  “  ( 0 ..^ 𝐸 ) )  ∪  ( 𝑊  “  ( 𝐸 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 85 | 68 73 84 | 3eqtr3d | ⊢ ( 𝜑  →  ran  𝑊  =  ( ( 𝑊  “  ( 0 ..^ 𝐸 ) )  ∪  ( 𝑊  “  ( 𝐸 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 86 | 85 | uneq1d | ⊢ ( 𝜑  →  ( ran  𝑊  ∪  { 𝐼 } )  =  ( ( ( 𝑊  “  ( 0 ..^ 𝐸 ) )  ∪  ( 𝑊  “  ( 𝐸 ..^ ( ♯ ‘ 𝑊 ) ) ) )  ∪  { 𝐼 } ) ) | 
						
							| 87 | 9 65 86 | 3eqtr4a | ⊢ ( 𝜑  →  ran  𝑈  =  ( ran  𝑊  ∪  { 𝐼 } ) ) |