| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycpmco2.c |  | 
						
							| 2 |  | cycpmco2.s |  | 
						
							| 3 |  | cycpmco2.d |  | 
						
							| 4 |  | cycpmco2.w |  | 
						
							| 5 |  | cycpmco2.i |  | 
						
							| 6 |  | cycpmco2.j |  | 
						
							| 7 |  | cycpmco2.e |  | 
						
							| 8 |  | cycpmco2.1 |  | 
						
							| 9 |  | un23 |  | 
						
							| 10 |  | ovexd |  | 
						
							| 11 | 7 10 | eqeltrid |  | 
						
							| 12 | 5 | eldifad |  | 
						
							| 13 | 12 | s1cld |  | 
						
							| 14 |  | splval |  | 
						
							| 15 | 4 11 11 13 14 | syl13anc |  | 
						
							| 16 | 8 15 | eqtrid |  | 
						
							| 17 | 16 | rneqd |  | 
						
							| 18 |  | ssrab2 |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 | 1 2 19 | tocycf |  | 
						
							| 21 | 3 20 | syl |  | 
						
							| 22 | 21 | fdmd |  | 
						
							| 23 | 4 22 | eleqtrd |  | 
						
							| 24 | 18 23 | sselid |  | 
						
							| 25 |  | pfxcl |  | 
						
							| 26 | 24 25 | syl |  | 
						
							| 27 |  | ccatcl |  | 
						
							| 28 | 26 13 27 | syl2anc |  | 
						
							| 29 |  | swrdcl |  | 
						
							| 30 | 24 29 | syl |  | 
						
							| 31 |  | ccatrn |  | 
						
							| 32 | 28 30 31 | syl2anc |  | 
						
							| 33 |  | ccatrn |  | 
						
							| 34 | 26 13 33 | syl2anc |  | 
						
							| 35 |  | id |  | 
						
							| 36 |  | dmeq |  | 
						
							| 37 |  | eqidd |  | 
						
							| 38 | 35 36 37 | f1eq123d |  | 
						
							| 39 | 38 | elrab |  | 
						
							| 40 | 23 39 | sylib |  | 
						
							| 41 | 40 | simprd |  | 
						
							| 42 |  | f1cnv |  | 
						
							| 43 |  | f1of |  | 
						
							| 44 | 41 42 43 | 3syl |  | 
						
							| 45 | 44 6 | ffvelcdmd |  | 
						
							| 46 |  | wrddm |  | 
						
							| 47 | 24 46 | syl |  | 
						
							| 48 | 45 47 | eleqtrd |  | 
						
							| 49 |  | fzofzp1 |  | 
						
							| 50 | 48 49 | syl |  | 
						
							| 51 | 7 50 | eqeltrid |  | 
						
							| 52 |  | pfxrn3 |  | 
						
							| 53 | 24 51 52 | syl2anc |  | 
						
							| 54 |  | s1rn |  | 
						
							| 55 | 12 54 | syl |  | 
						
							| 56 | 53 55 | uneq12d |  | 
						
							| 57 | 34 56 | eqtrd |  | 
						
							| 58 |  | lencl |  | 
						
							| 59 |  | nn0fz0 |  | 
						
							| 60 | 59 | biimpi |  | 
						
							| 61 | 24 58 60 | 3syl |  | 
						
							| 62 |  | swrdrn3 |  | 
						
							| 63 | 24 51 61 62 | syl3anc |  | 
						
							| 64 | 57 63 | uneq12d |  | 
						
							| 65 | 17 32 64 | 3eqtrd |  | 
						
							| 66 |  | fzosplit |  | 
						
							| 67 | 51 66 | syl |  | 
						
							| 68 | 67 | imaeq2d |  | 
						
							| 69 |  | wrdf |  | 
						
							| 70 | 24 69 | syl |  | 
						
							| 71 | 70 | ffnd |  | 
						
							| 72 |  | fnima |  | 
						
							| 73 | 71 72 | syl |  | 
						
							| 74 |  | elfzuz3 |  | 
						
							| 75 |  | fzoss2 |  | 
						
							| 76 | 51 74 75 | 3syl |  | 
						
							| 77 |  | fz0ssnn0 |  | 
						
							| 78 | 77 51 | sselid |  | 
						
							| 79 |  | nn0uz |  | 
						
							| 80 | 78 79 | eleqtrdi |  | 
						
							| 81 |  | fzoss1 |  | 
						
							| 82 | 80 81 | syl |  | 
						
							| 83 |  | unima |  | 
						
							| 84 | 71 76 82 83 | syl3anc |  | 
						
							| 85 | 68 73 84 | 3eqtr3d |  | 
						
							| 86 | 85 | uneq1d |  | 
						
							| 87 | 9 65 86 | 3eqtr4a |  |