Step |
Hyp |
Ref |
Expression |
1 |
|
cycpmco2.c |
|
2 |
|
cycpmco2.s |
|
3 |
|
cycpmco2.d |
|
4 |
|
cycpmco2.w |
|
5 |
|
cycpmco2.i |
|
6 |
|
cycpmco2.j |
|
7 |
|
cycpmco2.e |
|
8 |
|
cycpmco2.1 |
|
9 |
|
un23 |
|
10 |
|
ovexd |
|
11 |
7 10
|
eqeltrid |
|
12 |
5
|
eldifad |
|
13 |
12
|
s1cld |
|
14 |
|
splval |
|
15 |
4 11 11 13 14
|
syl13anc |
|
16 |
8 15
|
eqtrid |
|
17 |
16
|
rneqd |
|
18 |
|
ssrab2 |
|
19 |
|
eqid |
|
20 |
1 2 19
|
tocycf |
|
21 |
3 20
|
syl |
|
22 |
21
|
fdmd |
|
23 |
4 22
|
eleqtrd |
|
24 |
18 23
|
sselid |
|
25 |
|
pfxcl |
|
26 |
24 25
|
syl |
|
27 |
|
ccatcl |
|
28 |
26 13 27
|
syl2anc |
|
29 |
|
swrdcl |
|
30 |
24 29
|
syl |
|
31 |
|
ccatrn |
|
32 |
28 30 31
|
syl2anc |
|
33 |
|
ccatrn |
|
34 |
26 13 33
|
syl2anc |
|
35 |
|
id |
|
36 |
|
dmeq |
|
37 |
|
eqidd |
|
38 |
35 36 37
|
f1eq123d |
|
39 |
38
|
elrab |
|
40 |
23 39
|
sylib |
|
41 |
40
|
simprd |
|
42 |
|
f1cnv |
|
43 |
|
f1of |
|
44 |
41 42 43
|
3syl |
|
45 |
44 6
|
ffvelrnd |
|
46 |
|
wrddm |
|
47 |
24 46
|
syl |
|
48 |
45 47
|
eleqtrd |
|
49 |
|
fzofzp1 |
|
50 |
48 49
|
syl |
|
51 |
7 50
|
eqeltrid |
|
52 |
|
pfxrn3 |
|
53 |
24 51 52
|
syl2anc |
|
54 |
|
s1rn |
|
55 |
12 54
|
syl |
|
56 |
53 55
|
uneq12d |
|
57 |
34 56
|
eqtrd |
|
58 |
|
lencl |
|
59 |
|
nn0fz0 |
|
60 |
59
|
biimpi |
|
61 |
24 58 60
|
3syl |
|
62 |
|
swrdrn3 |
|
63 |
24 51 61 62
|
syl3anc |
|
64 |
57 63
|
uneq12d |
|
65 |
17 32 64
|
3eqtrd |
|
66 |
|
fzosplit |
|
67 |
51 66
|
syl |
|
68 |
67
|
imaeq2d |
|
69 |
|
wrdf |
|
70 |
24 69
|
syl |
|
71 |
70
|
ffnd |
|
72 |
|
fnima |
|
73 |
71 72
|
syl |
|
74 |
|
elfzuz3 |
|
75 |
|
fzoss2 |
|
76 |
51 74 75
|
3syl |
|
77 |
|
fz0ssnn0 |
|
78 |
77 51
|
sselid |
|
79 |
|
nn0uz |
|
80 |
78 79
|
eleqtrdi |
|
81 |
|
fzoss1 |
|
82 |
80 81
|
syl |
|
83 |
|
unima |
|
84 |
71 76 82 83
|
syl3anc |
|
85 |
68 73 84
|
3eqtr3d |
|
86 |
85
|
uneq1d |
|
87 |
9 65 86
|
3eqtr4a |
|