Metamath Proof Explorer


Theorem cycpmco2rn

Description: The orbit of the composition of a cyclic permutation and a well-chosen transposition is one element more than the orbit of the original permutation. (Contributed by Thierry Arnoux, 4-Jan-2024)

Ref Expression
Hypotheses cycpmco2.c M = toCyc D
cycpmco2.s S = SymGrp D
cycpmco2.d φ D V
cycpmco2.w φ W dom M
cycpmco2.i φ I D ran W
cycpmco2.j φ J ran W
cycpmco2.e E = W -1 J + 1
cycpmco2.1 U = W splice E E ⟨“ I ”⟩
Assertion cycpmco2rn φ ran U = ran W I

Proof

Step Hyp Ref Expression
1 cycpmco2.c M = toCyc D
2 cycpmco2.s S = SymGrp D
3 cycpmco2.d φ D V
4 cycpmco2.w φ W dom M
5 cycpmco2.i φ I D ran W
6 cycpmco2.j φ J ran W
7 cycpmco2.e E = W -1 J + 1
8 cycpmco2.1 U = W splice E E ⟨“ I ”⟩
9 un23 W 0 ..^ E I W E ..^ W = W 0 ..^ E W E ..^ W I
10 ovexd φ W -1 J + 1 V
11 7 10 eqeltrid φ E V
12 5 eldifad φ I D
13 12 s1cld φ ⟨“ I ”⟩ Word D
14 splval W dom M E V E V ⟨“ I ”⟩ Word D W splice E E ⟨“ I ”⟩ = W prefix E ++ ⟨“ I ”⟩ ++ W substr E W
15 4 11 11 13 14 syl13anc φ W splice E E ⟨“ I ”⟩ = W prefix E ++ ⟨“ I ”⟩ ++ W substr E W
16 8 15 syl5eq φ U = W prefix E ++ ⟨“ I ”⟩ ++ W substr E W
17 16 rneqd φ ran U = ran W prefix E ++ ⟨“ I ”⟩ ++ W substr E W
18 ssrab2 w Word D | w : dom w 1-1 D Word D
19 eqid Base S = Base S
20 1 2 19 tocycf D V M : w Word D | w : dom w 1-1 D Base S
21 3 20 syl φ M : w Word D | w : dom w 1-1 D Base S
22 21 fdmd φ dom M = w Word D | w : dom w 1-1 D
23 4 22 eleqtrd φ W w Word D | w : dom w 1-1 D
24 18 23 sselid φ W Word D
25 pfxcl W Word D W prefix E Word D
26 24 25 syl φ W prefix E Word D
27 ccatcl W prefix E Word D ⟨“ I ”⟩ Word D W prefix E ++ ⟨“ I ”⟩ Word D
28 26 13 27 syl2anc φ W prefix E ++ ⟨“ I ”⟩ Word D
29 swrdcl W Word D W substr E W Word D
30 24 29 syl φ W substr E W Word D
31 ccatrn W prefix E ++ ⟨“ I ”⟩ Word D W substr E W Word D ran W prefix E ++ ⟨“ I ”⟩ ++ W substr E W = ran W prefix E ++ ⟨“ I ”⟩ ran W substr E W
32 28 30 31 syl2anc φ ran W prefix E ++ ⟨“ I ”⟩ ++ W substr E W = ran W prefix E ++ ⟨“ I ”⟩ ran W substr E W
33 ccatrn W prefix E Word D ⟨“ I ”⟩ Word D ran W prefix E ++ ⟨“ I ”⟩ = ran W prefix E ran ⟨“ I ”⟩
34 26 13 33 syl2anc φ ran W prefix E ++ ⟨“ I ”⟩ = ran W prefix E ran ⟨“ I ”⟩
35 id w = W w = W
36 dmeq w = W dom w = dom W
37 eqidd w = W D = D
38 35 36 37 f1eq123d w = W w : dom w 1-1 D W : dom W 1-1 D
39 38 elrab W w Word D | w : dom w 1-1 D W Word D W : dom W 1-1 D
40 23 39 sylib φ W Word D W : dom W 1-1 D
41 40 simprd φ W : dom W 1-1 D
42 f1cnv W : dom W 1-1 D W -1 : ran W 1-1 onto dom W
43 f1of W -1 : ran W 1-1 onto dom W W -1 : ran W dom W
44 41 42 43 3syl φ W -1 : ran W dom W
45 44 6 ffvelrnd φ W -1 J dom W
46 wrddm W Word D dom W = 0 ..^ W
47 24 46 syl φ dom W = 0 ..^ W
48 45 47 eleqtrd φ W -1 J 0 ..^ W
49 fzofzp1 W -1 J 0 ..^ W W -1 J + 1 0 W
50 48 49 syl φ W -1 J + 1 0 W
51 7 50 eqeltrid φ E 0 W
52 pfxrn3 W Word D E 0 W ran W prefix E = W 0 ..^ E
53 24 51 52 syl2anc φ ran W prefix E = W 0 ..^ E
54 s1rn I D ran ⟨“ I ”⟩ = I
55 12 54 syl φ ran ⟨“ I ”⟩ = I
56 53 55 uneq12d φ ran W prefix E ran ⟨“ I ”⟩ = W 0 ..^ E I
57 34 56 eqtrd φ ran W prefix E ++ ⟨“ I ”⟩ = W 0 ..^ E I
58 lencl W Word D W 0
59 nn0fz0 W 0 W 0 W
60 59 biimpi W 0 W 0 W
61 24 58 60 3syl φ W 0 W
62 swrdrn3 W Word D E 0 W W 0 W ran W substr E W = W E ..^ W
63 24 51 61 62 syl3anc φ ran W substr E W = W E ..^ W
64 57 63 uneq12d φ ran W prefix E ++ ⟨“ I ”⟩ ran W substr E W = W 0 ..^ E I W E ..^ W
65 17 32 64 3eqtrd φ ran U = W 0 ..^ E I W E ..^ W
66 fzosplit E 0 W 0 ..^ W = 0 ..^ E E ..^ W
67 51 66 syl φ 0 ..^ W = 0 ..^ E E ..^ W
68 67 imaeq2d φ W 0 ..^ W = W 0 ..^ E E ..^ W
69 wrdf W Word D W : 0 ..^ W D
70 24 69 syl φ W : 0 ..^ W D
71 70 ffnd φ W Fn 0 ..^ W
72 fnima W Fn 0 ..^ W W 0 ..^ W = ran W
73 71 72 syl φ W 0 ..^ W = ran W
74 elfzuz3 E 0 W W E
75 fzoss2 W E 0 ..^ E 0 ..^ W
76 51 74 75 3syl φ 0 ..^ E 0 ..^ W
77 fz0ssnn0 0 W 0
78 77 51 sselid φ E 0
79 nn0uz 0 = 0
80 78 79 eleqtrdi φ E 0
81 fzoss1 E 0 E ..^ W 0 ..^ W
82 80 81 syl φ E ..^ W 0 ..^ W
83 unima W Fn 0 ..^ W 0 ..^ E 0 ..^ W E ..^ W 0 ..^ W W 0 ..^ E E ..^ W = W 0 ..^ E W E ..^ W
84 71 76 82 83 syl3anc φ W 0 ..^ E E ..^ W = W 0 ..^ E W E ..^ W
85 68 73 84 3eqtr3d φ ran W = W 0 ..^ E W E ..^ W
86 85 uneq1d φ ran W I = W 0 ..^ E W E ..^ W I
87 9 65 86 3eqtr4a φ ran U = ran W I