| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cycpmco2.c |
⊢ 𝑀 = ( toCyc ‘ 𝐷 ) |
| 2 |
|
cycpmco2.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) |
| 3 |
|
cycpmco2.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
| 4 |
|
cycpmco2.w |
⊢ ( 𝜑 → 𝑊 ∈ dom 𝑀 ) |
| 5 |
|
cycpmco2.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝐷 ∖ ran 𝑊 ) ) |
| 6 |
|
cycpmco2.j |
⊢ ( 𝜑 → 𝐽 ∈ ran 𝑊 ) |
| 7 |
|
cycpmco2.e |
⊢ 𝐸 = ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) |
| 8 |
|
cycpmco2.1 |
⊢ 𝑈 = ( 𝑊 splice 〈 𝐸 , 𝐸 , 〈“ 𝐼 ”〉 〉 ) |
| 9 |
|
cycpmco2lem7.1 |
⊢ ( 𝜑 → 𝐾 ∈ ran 𝑊 ) |
| 10 |
|
cycpmco2lem7.2 |
⊢ ( 𝜑 → 𝐾 ≠ 𝐽 ) |
| 11 |
|
cycpmco2lem7.3 |
⊢ ( 𝜑 → ( ◡ 𝑈 ‘ 𝐾 ) ∈ ( 0 ..^ 𝐸 ) ) |
| 12 |
|
ssrab2 |
⊢ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ⊆ Word 𝐷 |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 14 |
1 2 13
|
tocycf |
⊢ ( 𝐷 ∈ 𝑉 → 𝑀 : { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) ) |
| 15 |
3 14
|
syl |
⊢ ( 𝜑 → 𝑀 : { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) ) |
| 16 |
15
|
fdmd |
⊢ ( 𝜑 → dom 𝑀 = { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
| 17 |
4 16
|
eleqtrd |
⊢ ( 𝜑 → 𝑊 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ) |
| 18 |
12 17
|
sselid |
⊢ ( 𝜑 → 𝑊 ∈ Word 𝐷 ) |
| 19 |
5
|
eldifad |
⊢ ( 𝜑 → 𝐼 ∈ 𝐷 ) |
| 20 |
19
|
s1cld |
⊢ ( 𝜑 → 〈“ 𝐼 ”〉 ∈ Word 𝐷 ) |
| 21 |
|
splcl |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 〈“ 𝐼 ”〉 ∈ Word 𝐷 ) → ( 𝑊 splice 〈 𝐸 , 𝐸 , 〈“ 𝐼 ”〉 〉 ) ∈ Word 𝐷 ) |
| 22 |
18 20 21
|
syl2anc |
⊢ ( 𝜑 → ( 𝑊 splice 〈 𝐸 , 𝐸 , 〈“ 𝐼 ”〉 〉 ) ∈ Word 𝐷 ) |
| 23 |
8 22
|
eqeltrid |
⊢ ( 𝜑 → 𝑈 ∈ Word 𝐷 ) |
| 24 |
1 2 3 4 5 6 7 8
|
cycpmco2f1 |
⊢ ( 𝜑 → 𝑈 : dom 𝑈 –1-1→ 𝐷 ) |
| 25 |
|
id |
⊢ ( 𝑤 = 𝑊 → 𝑤 = 𝑊 ) |
| 26 |
|
dmeq |
⊢ ( 𝑤 = 𝑊 → dom 𝑤 = dom 𝑊 ) |
| 27 |
|
eqidd |
⊢ ( 𝑤 = 𝑊 → 𝐷 = 𝐷 ) |
| 28 |
25 26 27
|
f1eq123d |
⊢ ( 𝑤 = 𝑊 → ( 𝑤 : dom 𝑤 –1-1→ 𝐷 ↔ 𝑊 : dom 𝑊 –1-1→ 𝐷 ) ) |
| 29 |
28
|
elrab |
⊢ ( 𝑊 ∈ { 𝑤 ∈ Word 𝐷 ∣ 𝑤 : dom 𝑤 –1-1→ 𝐷 } ↔ ( 𝑊 ∈ Word 𝐷 ∧ 𝑊 : dom 𝑊 –1-1→ 𝐷 ) ) |
| 30 |
17 29
|
sylib |
⊢ ( 𝜑 → ( 𝑊 ∈ Word 𝐷 ∧ 𝑊 : dom 𝑊 –1-1→ 𝐷 ) ) |
| 31 |
30
|
simprd |
⊢ ( 𝜑 → 𝑊 : dom 𝑊 –1-1→ 𝐷 ) |
| 32 |
|
f1cnv |
⊢ ( 𝑊 : dom 𝑊 –1-1→ 𝐷 → ◡ 𝑊 : ran 𝑊 –1-1-onto→ dom 𝑊 ) |
| 33 |
|
f1of |
⊢ ( ◡ 𝑊 : ran 𝑊 –1-1-onto→ dom 𝑊 → ◡ 𝑊 : ran 𝑊 ⟶ dom 𝑊 ) |
| 34 |
31 32 33
|
3syl |
⊢ ( 𝜑 → ◡ 𝑊 : ran 𝑊 ⟶ dom 𝑊 ) |
| 35 |
34 6
|
ffvelcdmd |
⊢ ( 𝜑 → ( ◡ 𝑊 ‘ 𝐽 ) ∈ dom 𝑊 ) |
| 36 |
|
wrddm |
⊢ ( 𝑊 ∈ Word 𝐷 → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 37 |
18 36
|
syl |
⊢ ( 𝜑 → dom 𝑊 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 38 |
35 37
|
eleqtrd |
⊢ ( 𝜑 → ( ◡ 𝑊 ‘ 𝐽 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 39 |
|
fzofzp1 |
⊢ ( ( ◡ 𝑊 ‘ 𝐽 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 40 |
38 39
|
syl |
⊢ ( 𝜑 → ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 41 |
7 40
|
eqeltrid |
⊢ ( 𝜑 → 𝐸 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 42 |
|
elfzuz3 |
⊢ ( 𝐸 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ( ℤ≥ ‘ 𝐸 ) ) |
| 43 |
|
fzoss2 |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ( ℤ≥ ‘ 𝐸 ) → ( 0 ..^ 𝐸 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 44 |
41 42 43
|
3syl |
⊢ ( 𝜑 → ( 0 ..^ 𝐸 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 45 |
1 2 3 4 5 6 7 8
|
cycpmco2lem3 |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑈 ) − 1 ) = ( ♯ ‘ 𝑊 ) ) |
| 46 |
45
|
oveq2d |
⊢ ( 𝜑 → ( 0 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 47 |
44 46
|
sseqtrrd |
⊢ ( 𝜑 → ( 0 ..^ 𝐸 ) ⊆ ( 0 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) |
| 48 |
47 11
|
sseldd |
⊢ ( 𝜑 → ( ◡ 𝑈 ‘ 𝐾 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝑈 ) − 1 ) ) ) |
| 49 |
1 3 23 24 48
|
cycpmfv1 |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑈 ) ‘ ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) ) = ( 𝑈 ‘ ( ( ◡ 𝑈 ‘ 𝐾 ) + 1 ) ) ) |
| 50 |
|
f1f1orn |
⊢ ( 𝑈 : dom 𝑈 –1-1→ 𝐷 → 𝑈 : dom 𝑈 –1-1-onto→ ran 𝑈 ) |
| 51 |
24 50
|
syl |
⊢ ( 𝜑 → 𝑈 : dom 𝑈 –1-1-onto→ ran 𝑈 ) |
| 52 |
|
ssun1 |
⊢ ran 𝑊 ⊆ ( ran 𝑊 ∪ { 𝐼 } ) |
| 53 |
1 2 3 4 5 6 7 8
|
cycpmco2rn |
⊢ ( 𝜑 → ran 𝑈 = ( ran 𝑊 ∪ { 𝐼 } ) ) |
| 54 |
52 53
|
sseqtrrid |
⊢ ( 𝜑 → ran 𝑊 ⊆ ran 𝑈 ) |
| 55 |
54
|
sselda |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ran 𝑊 ) → 𝐾 ∈ ran 𝑈 ) |
| 56 |
|
f1ocnvfv2 |
⊢ ( ( 𝑈 : dom 𝑈 –1-1-onto→ ran 𝑈 ∧ 𝐾 ∈ ran 𝑈 ) → ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) = 𝐾 ) |
| 57 |
51 55 56
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ran 𝑊 ) → ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) = 𝐾 ) |
| 58 |
57
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ran 𝑊 ) → ( ( 𝑀 ‘ 𝑈 ) ‘ ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) ) = ( ( 𝑀 ‘ 𝑈 ) ‘ 𝐾 ) ) |
| 59 |
9 58
|
mpdan |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑈 ) ‘ ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) ) = ( ( 𝑀 ‘ 𝑈 ) ‘ 𝐾 ) ) |
| 60 |
|
f1f1orn |
⊢ ( 𝑊 : dom 𝑊 –1-1→ 𝐷 → 𝑊 : dom 𝑊 –1-1-onto→ ran 𝑊 ) |
| 61 |
31 60
|
syl |
⊢ ( 𝜑 → 𝑊 : dom 𝑊 –1-1-onto→ ran 𝑊 ) |
| 62 |
44 37
|
sseqtrrd |
⊢ ( 𝜑 → ( 0 ..^ 𝐸 ) ⊆ dom 𝑊 ) |
| 63 |
62 11
|
sseldd |
⊢ ( 𝜑 → ( ◡ 𝑈 ‘ 𝐾 ) ∈ dom 𝑊 ) |
| 64 |
|
f1ocnvfv1 |
⊢ ( ( 𝑊 : dom 𝑊 –1-1-onto→ ran 𝑊 ∧ ( ◡ 𝑈 ‘ 𝐾 ) ∈ dom 𝑊 ) → ( ◡ 𝑊 ‘ ( 𝑊 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) ) = ( ◡ 𝑈 ‘ 𝐾 ) ) |
| 65 |
61 63 64
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝑊 ‘ ( 𝑊 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) ) = ( ◡ 𝑈 ‘ 𝐾 ) ) |
| 66 |
8
|
fveq1i |
⊢ ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) = ( ( 𝑊 splice 〈 𝐸 , 𝐸 , 〈“ 𝐼 ”〉 〉 ) ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) |
| 67 |
|
fz0ssnn0 |
⊢ ( 0 ... ( ♯ ‘ 𝑊 ) ) ⊆ ℕ0 |
| 68 |
67 41
|
sselid |
⊢ ( 𝜑 → 𝐸 ∈ ℕ0 ) |
| 69 |
|
nn0fz0 |
⊢ ( 𝐸 ∈ ℕ0 ↔ 𝐸 ∈ ( 0 ... 𝐸 ) ) |
| 70 |
68 69
|
sylib |
⊢ ( 𝜑 → 𝐸 ∈ ( 0 ... 𝐸 ) ) |
| 71 |
18 70 41 20 11
|
splfv1 |
⊢ ( 𝜑 → ( ( 𝑊 splice 〈 𝐸 , 𝐸 , 〈“ 𝐼 ”〉 〉 ) ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) = ( 𝑊 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) ) |
| 72 |
66 71
|
eqtrid |
⊢ ( 𝜑 → ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) = ( 𝑊 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) ) |
| 73 |
9 57
|
mpdan |
⊢ ( 𝜑 → ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) = 𝐾 ) |
| 74 |
72 73
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑊 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) = 𝐾 ) |
| 75 |
74
|
fveq2d |
⊢ ( 𝜑 → ( ◡ 𝑊 ‘ ( 𝑊 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) ) = ( ◡ 𝑊 ‘ 𝐾 ) ) |
| 76 |
65 75
|
eqtr3d |
⊢ ( 𝜑 → ( ◡ 𝑈 ‘ 𝐾 ) = ( ◡ 𝑊 ‘ 𝐾 ) ) |
| 77 |
76
|
oveq1d |
⊢ ( 𝜑 → ( ( ◡ 𝑈 ‘ 𝐾 ) + 1 ) = ( ( ◡ 𝑊 ‘ 𝐾 ) + 1 ) ) |
| 78 |
77
|
fveq2d |
⊢ ( 𝜑 → ( 𝑈 ‘ ( ( ◡ 𝑈 ‘ 𝐾 ) + 1 ) ) = ( 𝑈 ‘ ( ( ◡ 𝑊 ‘ 𝐾 ) + 1 ) ) ) |
| 79 |
49 59 78
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑈 ) ‘ 𝐾 ) = ( 𝑈 ‘ ( ( ◡ 𝑊 ‘ 𝐾 ) + 1 ) ) ) |
| 80 |
8
|
a1i |
⊢ ( 𝜑 → 𝑈 = ( 𝑊 splice 〈 𝐸 , 𝐸 , 〈“ 𝐼 ”〉 〉 ) ) |
| 81 |
80
|
fveq1d |
⊢ ( 𝜑 → ( 𝑈 ‘ ( ( ◡ 𝑊 ‘ 𝐾 ) + 1 ) ) = ( ( 𝑊 splice 〈 𝐸 , 𝐸 , 〈“ 𝐼 ”〉 〉 ) ‘ ( ( ◡ 𝑊 ‘ 𝐾 ) + 1 ) ) ) |
| 82 |
41
|
elfzelzd |
⊢ ( 𝜑 → 𝐸 ∈ ℤ ) |
| 83 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ◡ 𝑈 ‘ 𝐾 ) ∈ ( 0 ..^ ( 𝐸 − 1 ) ) ) → ( ◡ 𝑈 ‘ 𝐾 ) ∈ ( 0 ..^ ( 𝐸 − 1 ) ) ) |
| 84 |
7
|
a1i |
⊢ ( 𝜑 → 𝐸 = ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) ) |
| 85 |
84
|
oveq1d |
⊢ ( 𝜑 → ( 𝐸 − 1 ) = ( ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) − 1 ) ) |
| 86 |
|
elfzonn0 |
⊢ ( ( ◡ 𝑊 ‘ 𝐽 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ◡ 𝑊 ‘ 𝐽 ) ∈ ℕ0 ) |
| 87 |
38 86
|
syl |
⊢ ( 𝜑 → ( ◡ 𝑊 ‘ 𝐽 ) ∈ ℕ0 ) |
| 88 |
87
|
nn0cnd |
⊢ ( 𝜑 → ( ◡ 𝑊 ‘ 𝐽 ) ∈ ℂ ) |
| 89 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 90 |
88 89
|
pncand |
⊢ ( 𝜑 → ( ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) − 1 ) = ( ◡ 𝑊 ‘ 𝐽 ) ) |
| 91 |
85 90
|
eqtr2d |
⊢ ( 𝜑 → ( ◡ 𝑊 ‘ 𝐽 ) = ( 𝐸 − 1 ) ) |
| 92 |
91
|
adantr |
⊢ ( ( 𝜑 ∧ ( ◡ 𝑈 ‘ 𝐾 ) = ( 𝐸 − 1 ) ) → ( ◡ 𝑊 ‘ 𝐽 ) = ( 𝐸 − 1 ) ) |
| 93 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ◡ 𝑈 ‘ 𝐾 ) = ( 𝐸 − 1 ) ) → ( ◡ 𝑈 ‘ 𝐾 ) = ( 𝐸 − 1 ) ) |
| 94 |
76
|
adantr |
⊢ ( ( 𝜑 ∧ ( ◡ 𝑈 ‘ 𝐾 ) = ( 𝐸 − 1 ) ) → ( ◡ 𝑈 ‘ 𝐾 ) = ( ◡ 𝑊 ‘ 𝐾 ) ) |
| 95 |
92 93 94
|
3eqtr2rd |
⊢ ( ( 𝜑 ∧ ( ◡ 𝑈 ‘ 𝐾 ) = ( 𝐸 − 1 ) ) → ( ◡ 𝑊 ‘ 𝐾 ) = ( ◡ 𝑊 ‘ 𝐽 ) ) |
| 96 |
95
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( ◡ 𝑈 ‘ 𝐾 ) = ( 𝐸 − 1 ) ) → ( 𝑊 ‘ ( ◡ 𝑊 ‘ 𝐾 ) ) = ( 𝑊 ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) ) |
| 97 |
|
f1ocnvfv2 |
⊢ ( ( 𝑊 : dom 𝑊 –1-1-onto→ ran 𝑊 ∧ 𝐾 ∈ ran 𝑊 ) → ( 𝑊 ‘ ( ◡ 𝑊 ‘ 𝐾 ) ) = 𝐾 ) |
| 98 |
61 9 97
|
syl2anc |
⊢ ( 𝜑 → ( 𝑊 ‘ ( ◡ 𝑊 ‘ 𝐾 ) ) = 𝐾 ) |
| 99 |
98
|
adantr |
⊢ ( ( 𝜑 ∧ ( ◡ 𝑈 ‘ 𝐾 ) = ( 𝐸 − 1 ) ) → ( 𝑊 ‘ ( ◡ 𝑊 ‘ 𝐾 ) ) = 𝐾 ) |
| 100 |
|
f1ocnvfv2 |
⊢ ( ( 𝑊 : dom 𝑊 –1-1-onto→ ran 𝑊 ∧ 𝐽 ∈ ran 𝑊 ) → ( 𝑊 ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) = 𝐽 ) |
| 101 |
61 6 100
|
syl2anc |
⊢ ( 𝜑 → ( 𝑊 ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) = 𝐽 ) |
| 102 |
101
|
adantr |
⊢ ( ( 𝜑 ∧ ( ◡ 𝑈 ‘ 𝐾 ) = ( 𝐸 − 1 ) ) → ( 𝑊 ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) = 𝐽 ) |
| 103 |
96 99 102
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( ◡ 𝑈 ‘ 𝐾 ) = ( 𝐸 − 1 ) ) → 𝐾 = 𝐽 ) |
| 104 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( ◡ 𝑈 ‘ 𝐾 ) = ( 𝐸 − 1 ) ) → 𝐾 ≠ 𝐽 ) |
| 105 |
103 104
|
pm2.21ddne |
⊢ ( ( 𝜑 ∧ ( ◡ 𝑈 ‘ 𝐾 ) = ( 𝐸 − 1 ) ) → ( ◡ 𝑈 ‘ 𝐾 ) ∈ ( 0 ..^ ( 𝐸 − 1 ) ) ) |
| 106 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 107 |
|
nn0p1nn |
⊢ ( ( ◡ 𝑊 ‘ 𝐽 ) ∈ ℕ0 → ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) ∈ ℕ ) |
| 108 |
87 107
|
syl |
⊢ ( 𝜑 → ( ( ◡ 𝑊 ‘ 𝐽 ) + 1 ) ∈ ℕ ) |
| 109 |
7 108
|
eqeltrid |
⊢ ( 𝜑 → 𝐸 ∈ ℕ ) |
| 110 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 111 |
110
|
fveq2i |
⊢ ( ℤ≥ ‘ ( 0 + 1 ) ) = ( ℤ≥ ‘ 1 ) |
| 112 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 113 |
111 112
|
eqtr4i |
⊢ ( ℤ≥ ‘ ( 0 + 1 ) ) = ℕ |
| 114 |
109 113
|
eleqtrrdi |
⊢ ( 𝜑 → 𝐸 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ) |
| 115 |
|
fzosplitsnm1 |
⊢ ( ( 0 ∈ ℤ ∧ 𝐸 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ) → ( 0 ..^ 𝐸 ) = ( ( 0 ..^ ( 𝐸 − 1 ) ) ∪ { ( 𝐸 − 1 ) } ) ) |
| 116 |
106 114 115
|
syl2anc |
⊢ ( 𝜑 → ( 0 ..^ 𝐸 ) = ( ( 0 ..^ ( 𝐸 − 1 ) ) ∪ { ( 𝐸 − 1 ) } ) ) |
| 117 |
11 116
|
eleqtrd |
⊢ ( 𝜑 → ( ◡ 𝑈 ‘ 𝐾 ) ∈ ( ( 0 ..^ ( 𝐸 − 1 ) ) ∪ { ( 𝐸 − 1 ) } ) ) |
| 118 |
|
fvex |
⊢ ( ◡ 𝑈 ‘ 𝐾 ) ∈ V |
| 119 |
|
elunsn |
⊢ ( ( ◡ 𝑈 ‘ 𝐾 ) ∈ V → ( ( ◡ 𝑈 ‘ 𝐾 ) ∈ ( ( 0 ..^ ( 𝐸 − 1 ) ) ∪ { ( 𝐸 − 1 ) } ) ↔ ( ( ◡ 𝑈 ‘ 𝐾 ) ∈ ( 0 ..^ ( 𝐸 − 1 ) ) ∨ ( ◡ 𝑈 ‘ 𝐾 ) = ( 𝐸 − 1 ) ) ) ) |
| 120 |
118 119
|
ax-mp |
⊢ ( ( ◡ 𝑈 ‘ 𝐾 ) ∈ ( ( 0 ..^ ( 𝐸 − 1 ) ) ∪ { ( 𝐸 − 1 ) } ) ↔ ( ( ◡ 𝑈 ‘ 𝐾 ) ∈ ( 0 ..^ ( 𝐸 − 1 ) ) ∨ ( ◡ 𝑈 ‘ 𝐾 ) = ( 𝐸 − 1 ) ) ) |
| 121 |
117 120
|
sylib |
⊢ ( 𝜑 → ( ( ◡ 𝑈 ‘ 𝐾 ) ∈ ( 0 ..^ ( 𝐸 − 1 ) ) ∨ ( ◡ 𝑈 ‘ 𝐾 ) = ( 𝐸 − 1 ) ) ) |
| 122 |
83 105 121
|
mpjaodan |
⊢ ( 𝜑 → ( ◡ 𝑈 ‘ 𝐾 ) ∈ ( 0 ..^ ( 𝐸 − 1 ) ) ) |
| 123 |
|
elfzom1elp1fzo |
⊢ ( ( 𝐸 ∈ ℤ ∧ ( ◡ 𝑈 ‘ 𝐾 ) ∈ ( 0 ..^ ( 𝐸 − 1 ) ) ) → ( ( ◡ 𝑈 ‘ 𝐾 ) + 1 ) ∈ ( 0 ..^ 𝐸 ) ) |
| 124 |
82 122 123
|
syl2anc |
⊢ ( 𝜑 → ( ( ◡ 𝑈 ‘ 𝐾 ) + 1 ) ∈ ( 0 ..^ 𝐸 ) ) |
| 125 |
77 124
|
eqeltrrd |
⊢ ( 𝜑 → ( ( ◡ 𝑊 ‘ 𝐾 ) + 1 ) ∈ ( 0 ..^ 𝐸 ) ) |
| 126 |
18 70 41 20 125
|
splfv1 |
⊢ ( 𝜑 → ( ( 𝑊 splice 〈 𝐸 , 𝐸 , 〈“ 𝐼 ”〉 〉 ) ‘ ( ( ◡ 𝑊 ‘ 𝐾 ) + 1 ) ) = ( 𝑊 ‘ ( ( ◡ 𝑊 ‘ 𝐾 ) + 1 ) ) ) |
| 127 |
81 126
|
eqtrd |
⊢ ( 𝜑 → ( 𝑈 ‘ ( ( ◡ 𝑊 ‘ 𝐾 ) + 1 ) ) = ( 𝑊 ‘ ( ( ◡ 𝑊 ‘ 𝐾 ) + 1 ) ) ) |
| 128 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 129 |
82 128
|
zsubcld |
⊢ ( 𝜑 → ( 𝐸 − 1 ) ∈ ℤ ) |
| 130 |
|
lencl |
⊢ ( 𝑊 ∈ Word 𝐷 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
| 131 |
|
nn0fz0 |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ↔ ( ♯ ‘ 𝑊 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 132 |
131
|
biimpi |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ♯ ‘ 𝑊 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 133 |
18 130 132
|
3syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 134 |
133
|
elfzelzd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
| 135 |
134 128
|
zsubcld |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ℤ ) |
| 136 |
109
|
nnred |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
| 137 |
134
|
zred |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℝ ) |
| 138 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 139 |
|
elfzle2 |
⊢ ( 𝐸 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → 𝐸 ≤ ( ♯ ‘ 𝑊 ) ) |
| 140 |
41 139
|
syl |
⊢ ( 𝜑 → 𝐸 ≤ ( ♯ ‘ 𝑊 ) ) |
| 141 |
136 137 138 140
|
lesub1dd |
⊢ ( 𝜑 → ( 𝐸 − 1 ) ≤ ( ( ♯ ‘ 𝑊 ) − 1 ) ) |
| 142 |
|
eluz |
⊢ ( ( ( 𝐸 − 1 ) ∈ ℤ ∧ ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ℤ ) → ( ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( ℤ≥ ‘ ( 𝐸 − 1 ) ) ↔ ( 𝐸 − 1 ) ≤ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 143 |
142
|
biimpar |
⊢ ( ( ( ( 𝐸 − 1 ) ∈ ℤ ∧ ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ℤ ) ∧ ( 𝐸 − 1 ) ≤ ( ( ♯ ‘ 𝑊 ) − 1 ) ) → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( ℤ≥ ‘ ( 𝐸 − 1 ) ) ) |
| 144 |
129 135 141 143
|
syl21anc |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( ℤ≥ ‘ ( 𝐸 − 1 ) ) ) |
| 145 |
|
fzoss2 |
⊢ ( ( ( ♯ ‘ 𝑊 ) − 1 ) ∈ ( ℤ≥ ‘ ( 𝐸 − 1 ) ) → ( 0 ..^ ( 𝐸 − 1 ) ) ⊆ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 146 |
144 145
|
syl |
⊢ ( 𝜑 → ( 0 ..^ ( 𝐸 − 1 ) ) ⊆ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 147 |
146 122
|
sseldd |
⊢ ( 𝜑 → ( ◡ 𝑈 ‘ 𝐾 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 148 |
76 147
|
eqeltrrd |
⊢ ( 𝜑 → ( ◡ 𝑊 ‘ 𝐾 ) ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 149 |
1 3 18 31 148
|
cycpmfv1 |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑊 ) ‘ ( 𝑊 ‘ ( ◡ 𝑊 ‘ 𝐾 ) ) ) = ( 𝑊 ‘ ( ( ◡ 𝑊 ‘ 𝐾 ) + 1 ) ) ) |
| 150 |
98
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑊 ) ‘ ( 𝑊 ‘ ( ◡ 𝑊 ‘ 𝐾 ) ) ) = ( ( 𝑀 ‘ 𝑊 ) ‘ 𝐾 ) ) |
| 151 |
127 149 150
|
3eqtr2rd |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑊 ) ‘ 𝐾 ) = ( 𝑈 ‘ ( ( ◡ 𝑊 ‘ 𝐾 ) + 1 ) ) ) |
| 152 |
79 151
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝑈 ) ‘ 𝐾 ) = ( ( 𝑀 ‘ 𝑊 ) ‘ 𝐾 ) ) |