| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycpmco2.c | ⊢ 𝑀  =  ( toCyc ‘ 𝐷 ) | 
						
							| 2 |  | cycpmco2.s | ⊢ 𝑆  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 3 |  | cycpmco2.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑉 ) | 
						
							| 4 |  | cycpmco2.w | ⊢ ( 𝜑  →  𝑊  ∈  dom  𝑀 ) | 
						
							| 5 |  | cycpmco2.i | ⊢ ( 𝜑  →  𝐼  ∈  ( 𝐷  ∖  ran  𝑊 ) ) | 
						
							| 6 |  | cycpmco2.j | ⊢ ( 𝜑  →  𝐽  ∈  ran  𝑊 ) | 
						
							| 7 |  | cycpmco2.e | ⊢ 𝐸  =  ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 ) | 
						
							| 8 |  | cycpmco2.1 | ⊢ 𝑈  =  ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 ) | 
						
							| 9 |  | cycpmco2lem7.1 | ⊢ ( 𝜑  →  𝐾  ∈  ran  𝑊 ) | 
						
							| 10 |  | cycpmco2lem7.2 | ⊢ ( 𝜑  →  𝐾  ≠  𝐽 ) | 
						
							| 11 |  | cycpmco2lem7.3 | ⊢ ( 𝜑  →  ( ◡ 𝑈 ‘ 𝐾 )  ∈  ( 0 ..^ 𝐸 ) ) | 
						
							| 12 |  | ssrab2 | ⊢ { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ⊆  Word  𝐷 | 
						
							| 13 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 14 | 1 2 13 | tocycf | ⊢ ( 𝐷  ∈  𝑉  →  𝑀 : { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 15 | 3 14 | syl | ⊢ ( 𝜑  →  𝑀 : { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 16 | 15 | fdmd | ⊢ ( 𝜑  →  dom  𝑀  =  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ) | 
						
							| 17 | 4 16 | eleqtrd | ⊢ ( 𝜑  →  𝑊  ∈  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 } ) | 
						
							| 18 | 12 17 | sselid | ⊢ ( 𝜑  →  𝑊  ∈  Word  𝐷 ) | 
						
							| 19 | 5 | eldifad | ⊢ ( 𝜑  →  𝐼  ∈  𝐷 ) | 
						
							| 20 | 19 | s1cld | ⊢ ( 𝜑  →  〈“ 𝐼 ”〉  ∈  Word  𝐷 ) | 
						
							| 21 |  | splcl | ⊢ ( ( 𝑊  ∈  Word  𝐷  ∧  〈“ 𝐼 ”〉  ∈  Word  𝐷 )  →  ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 )  ∈  Word  𝐷 ) | 
						
							| 22 | 18 20 21 | syl2anc | ⊢ ( 𝜑  →  ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 )  ∈  Word  𝐷 ) | 
						
							| 23 | 8 22 | eqeltrid | ⊢ ( 𝜑  →  𝑈  ∈  Word  𝐷 ) | 
						
							| 24 | 1 2 3 4 5 6 7 8 | cycpmco2f1 | ⊢ ( 𝜑  →  𝑈 : dom  𝑈 –1-1→ 𝐷 ) | 
						
							| 25 |  | id | ⊢ ( 𝑤  =  𝑊  →  𝑤  =  𝑊 ) | 
						
							| 26 |  | dmeq | ⊢ ( 𝑤  =  𝑊  →  dom  𝑤  =  dom  𝑊 ) | 
						
							| 27 |  | eqidd | ⊢ ( 𝑤  =  𝑊  →  𝐷  =  𝐷 ) | 
						
							| 28 | 25 26 27 | f1eq123d | ⊢ ( 𝑤  =  𝑊  →  ( 𝑤 : dom  𝑤 –1-1→ 𝐷  ↔  𝑊 : dom  𝑊 –1-1→ 𝐷 ) ) | 
						
							| 29 | 28 | elrab | ⊢ ( 𝑊  ∈  { 𝑤  ∈  Word  𝐷  ∣  𝑤 : dom  𝑤 –1-1→ 𝐷 }  ↔  ( 𝑊  ∈  Word  𝐷  ∧  𝑊 : dom  𝑊 –1-1→ 𝐷 ) ) | 
						
							| 30 | 17 29 | sylib | ⊢ ( 𝜑  →  ( 𝑊  ∈  Word  𝐷  ∧  𝑊 : dom  𝑊 –1-1→ 𝐷 ) ) | 
						
							| 31 | 30 | simprd | ⊢ ( 𝜑  →  𝑊 : dom  𝑊 –1-1→ 𝐷 ) | 
						
							| 32 |  | f1cnv | ⊢ ( 𝑊 : dom  𝑊 –1-1→ 𝐷  →  ◡ 𝑊 : ran  𝑊 –1-1-onto→ dom  𝑊 ) | 
						
							| 33 |  | f1of | ⊢ ( ◡ 𝑊 : ran  𝑊 –1-1-onto→ dom  𝑊  →  ◡ 𝑊 : ran  𝑊 ⟶ dom  𝑊 ) | 
						
							| 34 | 31 32 33 | 3syl | ⊢ ( 𝜑  →  ◡ 𝑊 : ran  𝑊 ⟶ dom  𝑊 ) | 
						
							| 35 | 34 6 | ffvelcdmd | ⊢ ( 𝜑  →  ( ◡ 𝑊 ‘ 𝐽 )  ∈  dom  𝑊 ) | 
						
							| 36 |  | wrddm | ⊢ ( 𝑊  ∈  Word  𝐷  →  dom  𝑊  =  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 37 | 18 36 | syl | ⊢ ( 𝜑  →  dom  𝑊  =  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 38 | 35 37 | eleqtrd | ⊢ ( 𝜑  →  ( ◡ 𝑊 ‘ 𝐽 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 39 |  | fzofzp1 | ⊢ ( ( ◡ 𝑊 ‘ 𝐽 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 40 | 38 39 | syl | ⊢ ( 𝜑  →  ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 41 | 7 40 | eqeltrid | ⊢ ( 𝜑  →  𝐸  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 42 |  | elfzuz3 | ⊢ ( 𝐸  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  →  ( ♯ ‘ 𝑊 )  ∈  ( ℤ≥ ‘ 𝐸 ) ) | 
						
							| 43 |  | fzoss2 | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ( ℤ≥ ‘ 𝐸 )  →  ( 0 ..^ 𝐸 )  ⊆  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 44 | 41 42 43 | 3syl | ⊢ ( 𝜑  →  ( 0 ..^ 𝐸 )  ⊆  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 45 | 1 2 3 4 5 6 7 8 | cycpmco2lem3 | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑈 )  −  1 )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 46 | 45 | oveq2d | ⊢ ( 𝜑  →  ( 0 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) )  =  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 47 | 44 46 | sseqtrrd | ⊢ ( 𝜑  →  ( 0 ..^ 𝐸 )  ⊆  ( 0 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) ) ) | 
						
							| 48 | 47 11 | sseldd | ⊢ ( 𝜑  →  ( ◡ 𝑈 ‘ 𝐾 )  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑈 )  −  1 ) ) ) | 
						
							| 49 | 1 3 23 24 48 | cycpmfv1 | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑈 ) ‘ ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) )  =  ( 𝑈 ‘ ( ( ◡ 𝑈 ‘ 𝐾 )  +  1 ) ) ) | 
						
							| 50 |  | f1f1orn | ⊢ ( 𝑈 : dom  𝑈 –1-1→ 𝐷  →  𝑈 : dom  𝑈 –1-1-onto→ ran  𝑈 ) | 
						
							| 51 | 24 50 | syl | ⊢ ( 𝜑  →  𝑈 : dom  𝑈 –1-1-onto→ ran  𝑈 ) | 
						
							| 52 |  | ssun1 | ⊢ ran  𝑊  ⊆  ( ran  𝑊  ∪  { 𝐼 } ) | 
						
							| 53 | 1 2 3 4 5 6 7 8 | cycpmco2rn | ⊢ ( 𝜑  →  ran  𝑈  =  ( ran  𝑊  ∪  { 𝐼 } ) ) | 
						
							| 54 | 52 53 | sseqtrrid | ⊢ ( 𝜑  →  ran  𝑊  ⊆  ran  𝑈 ) | 
						
							| 55 | 54 | sselda | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ran  𝑊 )  →  𝐾  ∈  ran  𝑈 ) | 
						
							| 56 |  | f1ocnvfv2 | ⊢ ( ( 𝑈 : dom  𝑈 –1-1-onto→ ran  𝑈  ∧  𝐾  ∈  ran  𝑈 )  →  ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) )  =  𝐾 ) | 
						
							| 57 | 51 55 56 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ran  𝑊 )  →  ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) )  =  𝐾 ) | 
						
							| 58 | 57 | fveq2d | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ran  𝑊 )  →  ( ( 𝑀 ‘ 𝑈 ) ‘ ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) )  =  ( ( 𝑀 ‘ 𝑈 ) ‘ 𝐾 ) ) | 
						
							| 59 | 9 58 | mpdan | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑈 ) ‘ ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) )  =  ( ( 𝑀 ‘ 𝑈 ) ‘ 𝐾 ) ) | 
						
							| 60 |  | f1f1orn | ⊢ ( 𝑊 : dom  𝑊 –1-1→ 𝐷  →  𝑊 : dom  𝑊 –1-1-onto→ ran  𝑊 ) | 
						
							| 61 | 31 60 | syl | ⊢ ( 𝜑  →  𝑊 : dom  𝑊 –1-1-onto→ ran  𝑊 ) | 
						
							| 62 | 44 37 | sseqtrrd | ⊢ ( 𝜑  →  ( 0 ..^ 𝐸 )  ⊆  dom  𝑊 ) | 
						
							| 63 | 62 11 | sseldd | ⊢ ( 𝜑  →  ( ◡ 𝑈 ‘ 𝐾 )  ∈  dom  𝑊 ) | 
						
							| 64 |  | f1ocnvfv1 | ⊢ ( ( 𝑊 : dom  𝑊 –1-1-onto→ ran  𝑊  ∧  ( ◡ 𝑈 ‘ 𝐾 )  ∈  dom  𝑊 )  →  ( ◡ 𝑊 ‘ ( 𝑊 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) )  =  ( ◡ 𝑈 ‘ 𝐾 ) ) | 
						
							| 65 | 61 63 64 | syl2anc | ⊢ ( 𝜑  →  ( ◡ 𝑊 ‘ ( 𝑊 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) )  =  ( ◡ 𝑈 ‘ 𝐾 ) ) | 
						
							| 66 | 8 | fveq1i | ⊢ ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) )  =  ( ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 ) ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) | 
						
							| 67 |  | fz0ssnn0 | ⊢ ( 0 ... ( ♯ ‘ 𝑊 ) )  ⊆  ℕ0 | 
						
							| 68 | 67 41 | sselid | ⊢ ( 𝜑  →  𝐸  ∈  ℕ0 ) | 
						
							| 69 |  | nn0fz0 | ⊢ ( 𝐸  ∈  ℕ0  ↔  𝐸  ∈  ( 0 ... 𝐸 ) ) | 
						
							| 70 | 68 69 | sylib | ⊢ ( 𝜑  →  𝐸  ∈  ( 0 ... 𝐸 ) ) | 
						
							| 71 | 18 70 41 20 11 | splfv1 | ⊢ ( 𝜑  →  ( ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 ) ‘ ( ◡ 𝑈 ‘ 𝐾 ) )  =  ( 𝑊 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) ) | 
						
							| 72 | 66 71 | eqtrid | ⊢ ( 𝜑  →  ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) )  =  ( 𝑊 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) ) | 
						
							| 73 | 9 57 | mpdan | ⊢ ( 𝜑  →  ( 𝑈 ‘ ( ◡ 𝑈 ‘ 𝐾 ) )  =  𝐾 ) | 
						
							| 74 | 72 73 | eqtr3d | ⊢ ( 𝜑  →  ( 𝑊 ‘ ( ◡ 𝑈 ‘ 𝐾 ) )  =  𝐾 ) | 
						
							| 75 | 74 | fveq2d | ⊢ ( 𝜑  →  ( ◡ 𝑊 ‘ ( 𝑊 ‘ ( ◡ 𝑈 ‘ 𝐾 ) ) )  =  ( ◡ 𝑊 ‘ 𝐾 ) ) | 
						
							| 76 | 65 75 | eqtr3d | ⊢ ( 𝜑  →  ( ◡ 𝑈 ‘ 𝐾 )  =  ( ◡ 𝑊 ‘ 𝐾 ) ) | 
						
							| 77 | 76 | oveq1d | ⊢ ( 𝜑  →  ( ( ◡ 𝑈 ‘ 𝐾 )  +  1 )  =  ( ( ◡ 𝑊 ‘ 𝐾 )  +  1 ) ) | 
						
							| 78 | 77 | fveq2d | ⊢ ( 𝜑  →  ( 𝑈 ‘ ( ( ◡ 𝑈 ‘ 𝐾 )  +  1 ) )  =  ( 𝑈 ‘ ( ( ◡ 𝑊 ‘ 𝐾 )  +  1 ) ) ) | 
						
							| 79 | 49 59 78 | 3eqtr3d | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑈 ) ‘ 𝐾 )  =  ( 𝑈 ‘ ( ( ◡ 𝑊 ‘ 𝐾 )  +  1 ) ) ) | 
						
							| 80 | 8 | a1i | ⊢ ( 𝜑  →  𝑈  =  ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 ) ) | 
						
							| 81 | 80 | fveq1d | ⊢ ( 𝜑  →  ( 𝑈 ‘ ( ( ◡ 𝑊 ‘ 𝐾 )  +  1 ) )  =  ( ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 ) ‘ ( ( ◡ 𝑊 ‘ 𝐾 )  +  1 ) ) ) | 
						
							| 82 | 41 | elfzelzd | ⊢ ( 𝜑  →  𝐸  ∈  ℤ ) | 
						
							| 83 |  | simpr | ⊢ ( ( 𝜑  ∧  ( ◡ 𝑈 ‘ 𝐾 )  ∈  ( 0 ..^ ( 𝐸  −  1 ) ) )  →  ( ◡ 𝑈 ‘ 𝐾 )  ∈  ( 0 ..^ ( 𝐸  −  1 ) ) ) | 
						
							| 84 | 7 | a1i | ⊢ ( 𝜑  →  𝐸  =  ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 ) ) | 
						
							| 85 | 84 | oveq1d | ⊢ ( 𝜑  →  ( 𝐸  −  1 )  =  ( ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 )  −  1 ) ) | 
						
							| 86 |  | elfzonn0 | ⊢ ( ( ◡ 𝑊 ‘ 𝐽 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( ◡ 𝑊 ‘ 𝐽 )  ∈  ℕ0 ) | 
						
							| 87 | 38 86 | syl | ⊢ ( 𝜑  →  ( ◡ 𝑊 ‘ 𝐽 )  ∈  ℕ0 ) | 
						
							| 88 | 87 | nn0cnd | ⊢ ( 𝜑  →  ( ◡ 𝑊 ‘ 𝐽 )  ∈  ℂ ) | 
						
							| 89 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 90 | 88 89 | pncand | ⊢ ( 𝜑  →  ( ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 )  −  1 )  =  ( ◡ 𝑊 ‘ 𝐽 ) ) | 
						
							| 91 | 85 90 | eqtr2d | ⊢ ( 𝜑  →  ( ◡ 𝑊 ‘ 𝐽 )  =  ( 𝐸  −  1 ) ) | 
						
							| 92 | 91 | adantr | ⊢ ( ( 𝜑  ∧  ( ◡ 𝑈 ‘ 𝐾 )  =  ( 𝐸  −  1 ) )  →  ( ◡ 𝑊 ‘ 𝐽 )  =  ( 𝐸  −  1 ) ) | 
						
							| 93 |  | simpr | ⊢ ( ( 𝜑  ∧  ( ◡ 𝑈 ‘ 𝐾 )  =  ( 𝐸  −  1 ) )  →  ( ◡ 𝑈 ‘ 𝐾 )  =  ( 𝐸  −  1 ) ) | 
						
							| 94 | 76 | adantr | ⊢ ( ( 𝜑  ∧  ( ◡ 𝑈 ‘ 𝐾 )  =  ( 𝐸  −  1 ) )  →  ( ◡ 𝑈 ‘ 𝐾 )  =  ( ◡ 𝑊 ‘ 𝐾 ) ) | 
						
							| 95 | 92 93 94 | 3eqtr2rd | ⊢ ( ( 𝜑  ∧  ( ◡ 𝑈 ‘ 𝐾 )  =  ( 𝐸  −  1 ) )  →  ( ◡ 𝑊 ‘ 𝐾 )  =  ( ◡ 𝑊 ‘ 𝐽 ) ) | 
						
							| 96 | 95 | fveq2d | ⊢ ( ( 𝜑  ∧  ( ◡ 𝑈 ‘ 𝐾 )  =  ( 𝐸  −  1 ) )  →  ( 𝑊 ‘ ( ◡ 𝑊 ‘ 𝐾 ) )  =  ( 𝑊 ‘ ( ◡ 𝑊 ‘ 𝐽 ) ) ) | 
						
							| 97 |  | f1ocnvfv2 | ⊢ ( ( 𝑊 : dom  𝑊 –1-1-onto→ ran  𝑊  ∧  𝐾  ∈  ran  𝑊 )  →  ( 𝑊 ‘ ( ◡ 𝑊 ‘ 𝐾 ) )  =  𝐾 ) | 
						
							| 98 | 61 9 97 | syl2anc | ⊢ ( 𝜑  →  ( 𝑊 ‘ ( ◡ 𝑊 ‘ 𝐾 ) )  =  𝐾 ) | 
						
							| 99 | 98 | adantr | ⊢ ( ( 𝜑  ∧  ( ◡ 𝑈 ‘ 𝐾 )  =  ( 𝐸  −  1 ) )  →  ( 𝑊 ‘ ( ◡ 𝑊 ‘ 𝐾 ) )  =  𝐾 ) | 
						
							| 100 |  | f1ocnvfv2 | ⊢ ( ( 𝑊 : dom  𝑊 –1-1-onto→ ran  𝑊  ∧  𝐽  ∈  ran  𝑊 )  →  ( 𝑊 ‘ ( ◡ 𝑊 ‘ 𝐽 ) )  =  𝐽 ) | 
						
							| 101 | 61 6 100 | syl2anc | ⊢ ( 𝜑  →  ( 𝑊 ‘ ( ◡ 𝑊 ‘ 𝐽 ) )  =  𝐽 ) | 
						
							| 102 | 101 | adantr | ⊢ ( ( 𝜑  ∧  ( ◡ 𝑈 ‘ 𝐾 )  =  ( 𝐸  −  1 ) )  →  ( 𝑊 ‘ ( ◡ 𝑊 ‘ 𝐽 ) )  =  𝐽 ) | 
						
							| 103 | 96 99 102 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  ( ◡ 𝑈 ‘ 𝐾 )  =  ( 𝐸  −  1 ) )  →  𝐾  =  𝐽 ) | 
						
							| 104 | 10 | adantr | ⊢ ( ( 𝜑  ∧  ( ◡ 𝑈 ‘ 𝐾 )  =  ( 𝐸  −  1 ) )  →  𝐾  ≠  𝐽 ) | 
						
							| 105 | 103 104 | pm2.21ddne | ⊢ ( ( 𝜑  ∧  ( ◡ 𝑈 ‘ 𝐾 )  =  ( 𝐸  −  1 ) )  →  ( ◡ 𝑈 ‘ 𝐾 )  ∈  ( 0 ..^ ( 𝐸  −  1 ) ) ) | 
						
							| 106 |  | 0zd | ⊢ ( 𝜑  →  0  ∈  ℤ ) | 
						
							| 107 |  | nn0p1nn | ⊢ ( ( ◡ 𝑊 ‘ 𝐽 )  ∈  ℕ0  →  ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 )  ∈  ℕ ) | 
						
							| 108 | 87 107 | syl | ⊢ ( 𝜑  →  ( ( ◡ 𝑊 ‘ 𝐽 )  +  1 )  ∈  ℕ ) | 
						
							| 109 | 7 108 | eqeltrid | ⊢ ( 𝜑  →  𝐸  ∈  ℕ ) | 
						
							| 110 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 111 | 110 | fveq2i | ⊢ ( ℤ≥ ‘ ( 0  +  1 ) )  =  ( ℤ≥ ‘ 1 ) | 
						
							| 112 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 113 | 111 112 | eqtr4i | ⊢ ( ℤ≥ ‘ ( 0  +  1 ) )  =  ℕ | 
						
							| 114 | 109 113 | eleqtrrdi | ⊢ ( 𝜑  →  𝐸  ∈  ( ℤ≥ ‘ ( 0  +  1 ) ) ) | 
						
							| 115 |  | fzosplitsnm1 | ⊢ ( ( 0  ∈  ℤ  ∧  𝐸  ∈  ( ℤ≥ ‘ ( 0  +  1 ) ) )  →  ( 0 ..^ 𝐸 )  =  ( ( 0 ..^ ( 𝐸  −  1 ) )  ∪  { ( 𝐸  −  1 ) } ) ) | 
						
							| 116 | 106 114 115 | syl2anc | ⊢ ( 𝜑  →  ( 0 ..^ 𝐸 )  =  ( ( 0 ..^ ( 𝐸  −  1 ) )  ∪  { ( 𝐸  −  1 ) } ) ) | 
						
							| 117 | 11 116 | eleqtrd | ⊢ ( 𝜑  →  ( ◡ 𝑈 ‘ 𝐾 )  ∈  ( ( 0 ..^ ( 𝐸  −  1 ) )  ∪  { ( 𝐸  −  1 ) } ) ) | 
						
							| 118 |  | fvex | ⊢ ( ◡ 𝑈 ‘ 𝐾 )  ∈  V | 
						
							| 119 |  | elunsn | ⊢ ( ( ◡ 𝑈 ‘ 𝐾 )  ∈  V  →  ( ( ◡ 𝑈 ‘ 𝐾 )  ∈  ( ( 0 ..^ ( 𝐸  −  1 ) )  ∪  { ( 𝐸  −  1 ) } )  ↔  ( ( ◡ 𝑈 ‘ 𝐾 )  ∈  ( 0 ..^ ( 𝐸  −  1 ) )  ∨  ( ◡ 𝑈 ‘ 𝐾 )  =  ( 𝐸  −  1 ) ) ) ) | 
						
							| 120 | 118 119 | ax-mp | ⊢ ( ( ◡ 𝑈 ‘ 𝐾 )  ∈  ( ( 0 ..^ ( 𝐸  −  1 ) )  ∪  { ( 𝐸  −  1 ) } )  ↔  ( ( ◡ 𝑈 ‘ 𝐾 )  ∈  ( 0 ..^ ( 𝐸  −  1 ) )  ∨  ( ◡ 𝑈 ‘ 𝐾 )  =  ( 𝐸  −  1 ) ) ) | 
						
							| 121 | 117 120 | sylib | ⊢ ( 𝜑  →  ( ( ◡ 𝑈 ‘ 𝐾 )  ∈  ( 0 ..^ ( 𝐸  −  1 ) )  ∨  ( ◡ 𝑈 ‘ 𝐾 )  =  ( 𝐸  −  1 ) ) ) | 
						
							| 122 | 83 105 121 | mpjaodan | ⊢ ( 𝜑  →  ( ◡ 𝑈 ‘ 𝐾 )  ∈  ( 0 ..^ ( 𝐸  −  1 ) ) ) | 
						
							| 123 |  | elfzom1elp1fzo | ⊢ ( ( 𝐸  ∈  ℤ  ∧  ( ◡ 𝑈 ‘ 𝐾 )  ∈  ( 0 ..^ ( 𝐸  −  1 ) ) )  →  ( ( ◡ 𝑈 ‘ 𝐾 )  +  1 )  ∈  ( 0 ..^ 𝐸 ) ) | 
						
							| 124 | 82 122 123 | syl2anc | ⊢ ( 𝜑  →  ( ( ◡ 𝑈 ‘ 𝐾 )  +  1 )  ∈  ( 0 ..^ 𝐸 ) ) | 
						
							| 125 | 77 124 | eqeltrrd | ⊢ ( 𝜑  →  ( ( ◡ 𝑊 ‘ 𝐾 )  +  1 )  ∈  ( 0 ..^ 𝐸 ) ) | 
						
							| 126 | 18 70 41 20 125 | splfv1 | ⊢ ( 𝜑  →  ( ( 𝑊  splice  〈 𝐸 ,  𝐸 ,  〈“ 𝐼 ”〉 〉 ) ‘ ( ( ◡ 𝑊 ‘ 𝐾 )  +  1 ) )  =  ( 𝑊 ‘ ( ( ◡ 𝑊 ‘ 𝐾 )  +  1 ) ) ) | 
						
							| 127 | 81 126 | eqtrd | ⊢ ( 𝜑  →  ( 𝑈 ‘ ( ( ◡ 𝑊 ‘ 𝐾 )  +  1 ) )  =  ( 𝑊 ‘ ( ( ◡ 𝑊 ‘ 𝐾 )  +  1 ) ) ) | 
						
							| 128 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 129 | 82 128 | zsubcld | ⊢ ( 𝜑  →  ( 𝐸  −  1 )  ∈  ℤ ) | 
						
							| 130 |  | lencl | ⊢ ( 𝑊  ∈  Word  𝐷  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 131 |  | nn0fz0 | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ↔  ( ♯ ‘ 𝑊 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 132 | 131 | biimpi | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  →  ( ♯ ‘ 𝑊 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 133 | 18 130 132 | 3syl | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 134 | 133 | elfzelzd | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  ∈  ℤ ) | 
						
							| 135 | 134 128 | zsubcld | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑊 )  −  1 )  ∈  ℤ ) | 
						
							| 136 | 109 | nnred | ⊢ ( 𝜑  →  𝐸  ∈  ℝ ) | 
						
							| 137 | 134 | zred | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑊 )  ∈  ℝ ) | 
						
							| 138 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 139 |  | elfzle2 | ⊢ ( 𝐸  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  →  𝐸  ≤  ( ♯ ‘ 𝑊 ) ) | 
						
							| 140 | 41 139 | syl | ⊢ ( 𝜑  →  𝐸  ≤  ( ♯ ‘ 𝑊 ) ) | 
						
							| 141 | 136 137 138 140 | lesub1dd | ⊢ ( 𝜑  →  ( 𝐸  −  1 )  ≤  ( ( ♯ ‘ 𝑊 )  −  1 ) ) | 
						
							| 142 |  | eluz | ⊢ ( ( ( 𝐸  −  1 )  ∈  ℤ  ∧  ( ( ♯ ‘ 𝑊 )  −  1 )  ∈  ℤ )  →  ( ( ( ♯ ‘ 𝑊 )  −  1 )  ∈  ( ℤ≥ ‘ ( 𝐸  −  1 ) )  ↔  ( 𝐸  −  1 )  ≤  ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 143 | 142 | biimpar | ⊢ ( ( ( ( 𝐸  −  1 )  ∈  ℤ  ∧  ( ( ♯ ‘ 𝑊 )  −  1 )  ∈  ℤ )  ∧  ( 𝐸  −  1 )  ≤  ( ( ♯ ‘ 𝑊 )  −  1 ) )  →  ( ( ♯ ‘ 𝑊 )  −  1 )  ∈  ( ℤ≥ ‘ ( 𝐸  −  1 ) ) ) | 
						
							| 144 | 129 135 141 143 | syl21anc | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑊 )  −  1 )  ∈  ( ℤ≥ ‘ ( 𝐸  −  1 ) ) ) | 
						
							| 145 |  | fzoss2 | ⊢ ( ( ( ♯ ‘ 𝑊 )  −  1 )  ∈  ( ℤ≥ ‘ ( 𝐸  −  1 ) )  →  ( 0 ..^ ( 𝐸  −  1 ) )  ⊆  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 146 | 144 145 | syl | ⊢ ( 𝜑  →  ( 0 ..^ ( 𝐸  −  1 ) )  ⊆  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 147 | 146 122 | sseldd | ⊢ ( 𝜑  →  ( ◡ 𝑈 ‘ 𝐾 )  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 148 | 76 147 | eqeltrrd | ⊢ ( 𝜑  →  ( ◡ 𝑊 ‘ 𝐾 )  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 149 | 1 3 18 31 148 | cycpmfv1 | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑊 ) ‘ ( 𝑊 ‘ ( ◡ 𝑊 ‘ 𝐾 ) ) )  =  ( 𝑊 ‘ ( ( ◡ 𝑊 ‘ 𝐾 )  +  1 ) ) ) | 
						
							| 150 | 98 | fveq2d | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑊 ) ‘ ( 𝑊 ‘ ( ◡ 𝑊 ‘ 𝐾 ) ) )  =  ( ( 𝑀 ‘ 𝑊 ) ‘ 𝐾 ) ) | 
						
							| 151 | 127 149 150 | 3eqtr2rd | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑊 ) ‘ 𝐾 )  =  ( 𝑈 ‘ ( ( ◡ 𝑊 ‘ 𝐾 )  +  1 ) ) ) | 
						
							| 152 | 79 151 | eqtr4d | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝑈 ) ‘ 𝐾 )  =  ( ( 𝑀 ‘ 𝑊 ) ‘ 𝐾 ) ) |