| Step |
Hyp |
Ref |
Expression |
| 1 |
|
spllen.s |
⊢ ( 𝜑 → 𝑆 ∈ Word 𝐴 ) |
| 2 |
|
spllen.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 0 ... 𝑇 ) ) |
| 3 |
|
spllen.t |
⊢ ( 𝜑 → 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) |
| 4 |
|
spllen.r |
⊢ ( 𝜑 → 𝑅 ∈ Word 𝐴 ) |
| 5 |
|
splfv1.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 0 ..^ 𝐹 ) ) |
| 6 |
|
splval |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝐹 ∈ ( 0 ... 𝑇 ) ∧ 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ∧ 𝑅 ∈ Word 𝐴 ) ) → ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) = ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) |
| 7 |
1 2 3 4 6
|
syl13anc |
⊢ ( 𝜑 → ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) = ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) |
| 8 |
7
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) ‘ 𝑋 ) = ( ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ‘ 𝑋 ) ) |
| 9 |
|
pfxcl |
⊢ ( 𝑆 ∈ Word 𝐴 → ( 𝑆 prefix 𝐹 ) ∈ Word 𝐴 ) |
| 10 |
1 9
|
syl |
⊢ ( 𝜑 → ( 𝑆 prefix 𝐹 ) ∈ Word 𝐴 ) |
| 11 |
|
ccatcl |
⊢ ( ( ( 𝑆 prefix 𝐹 ) ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴 ) → ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ∈ Word 𝐴 ) |
| 12 |
10 4 11
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ∈ Word 𝐴 ) |
| 13 |
|
swrdcl |
⊢ ( 𝑆 ∈ Word 𝐴 → ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ∈ Word 𝐴 ) |
| 14 |
1 13
|
syl |
⊢ ( 𝜑 → ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ∈ Word 𝐴 ) |
| 15 |
2
|
elfzelzd |
⊢ ( 𝜑 → 𝐹 ∈ ℤ ) |
| 16 |
15
|
uzidd |
⊢ ( 𝜑 → 𝐹 ∈ ( ℤ≥ ‘ 𝐹 ) ) |
| 17 |
|
lencl |
⊢ ( 𝑅 ∈ Word 𝐴 → ( ♯ ‘ 𝑅 ) ∈ ℕ0 ) |
| 18 |
4 17
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑅 ) ∈ ℕ0 ) |
| 19 |
|
uzaddcl |
⊢ ( ( 𝐹 ∈ ( ℤ≥ ‘ 𝐹 ) ∧ ( ♯ ‘ 𝑅 ) ∈ ℕ0 ) → ( 𝐹 + ( ♯ ‘ 𝑅 ) ) ∈ ( ℤ≥ ‘ 𝐹 ) ) |
| 20 |
16 18 19
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 + ( ♯ ‘ 𝑅 ) ) ∈ ( ℤ≥ ‘ 𝐹 ) ) |
| 21 |
|
fzoss2 |
⊢ ( ( 𝐹 + ( ♯ ‘ 𝑅 ) ) ∈ ( ℤ≥ ‘ 𝐹 ) → ( 0 ..^ 𝐹 ) ⊆ ( 0 ..^ ( 𝐹 + ( ♯ ‘ 𝑅 ) ) ) ) |
| 22 |
20 21
|
syl |
⊢ ( 𝜑 → ( 0 ..^ 𝐹 ) ⊆ ( 0 ..^ ( 𝐹 + ( ♯ ‘ 𝑅 ) ) ) ) |
| 23 |
22 5
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ ( 0 ..^ ( 𝐹 + ( ♯ ‘ 𝑅 ) ) ) ) |
| 24 |
|
ccatlen |
⊢ ( ( ( 𝑆 prefix 𝐹 ) ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴 ) → ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) = ( ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) + ( ♯ ‘ 𝑅 ) ) ) |
| 25 |
10 4 24
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) = ( ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) + ( ♯ ‘ 𝑅 ) ) ) |
| 26 |
|
fzass4 |
⊢ ( ( 𝐹 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ∧ 𝑇 ∈ ( 𝐹 ... ( ♯ ‘ 𝑆 ) ) ) ↔ ( 𝐹 ∈ ( 0 ... 𝑇 ) ∧ 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) ) |
| 27 |
26
|
biimpri |
⊢ ( ( 𝐹 ∈ ( 0 ... 𝑇 ) ∧ 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( 𝐹 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ∧ 𝑇 ∈ ( 𝐹 ... ( ♯ ‘ 𝑆 ) ) ) ) |
| 28 |
27
|
simpld |
⊢ ( ( 𝐹 ∈ ( 0 ... 𝑇 ) ∧ 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → 𝐹 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) |
| 29 |
2 3 28
|
syl2anc |
⊢ ( 𝜑 → 𝐹 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) |
| 30 |
|
pfxlen |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) = 𝐹 ) |
| 31 |
1 29 30
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) = 𝐹 ) |
| 32 |
31
|
oveq1d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) + ( ♯ ‘ 𝑅 ) ) = ( 𝐹 + ( ♯ ‘ 𝑅 ) ) ) |
| 33 |
25 32
|
eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) = ( 𝐹 + ( ♯ ‘ 𝑅 ) ) ) |
| 34 |
33
|
oveq2d |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) ) = ( 0 ..^ ( 𝐹 + ( ♯ ‘ 𝑅 ) ) ) ) |
| 35 |
23 34
|
eleqtrrd |
⊢ ( 𝜑 → 𝑋 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) ) ) |
| 36 |
|
ccatval1 |
⊢ ( ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ∈ Word 𝐴 ∧ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ∈ Word 𝐴 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) ) ) → ( ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ‘ 𝑋 ) = ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ‘ 𝑋 ) ) |
| 37 |
12 14 35 36
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ‘ 𝑋 ) = ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ‘ 𝑋 ) ) |
| 38 |
31
|
oveq2d |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) ) = ( 0 ..^ 𝐹 ) ) |
| 39 |
5 38
|
eleqtrrd |
⊢ ( 𝜑 → 𝑋 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) ) ) |
| 40 |
|
ccatval1 |
⊢ ( ( ( 𝑆 prefix 𝐹 ) ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) ) ) → ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ‘ 𝑋 ) = ( ( 𝑆 prefix 𝐹 ) ‘ 𝑋 ) ) |
| 41 |
10 4 39 40
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ‘ 𝑋 ) = ( ( 𝑆 prefix 𝐹 ) ‘ 𝑋 ) ) |
| 42 |
|
pfxfv |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ∧ 𝑋 ∈ ( 0 ..^ 𝐹 ) ) → ( ( 𝑆 prefix 𝐹 ) ‘ 𝑋 ) = ( 𝑆 ‘ 𝑋 ) ) |
| 43 |
1 29 5 42
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑆 prefix 𝐹 ) ‘ 𝑋 ) = ( 𝑆 ‘ 𝑋 ) ) |
| 44 |
41 43
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ‘ 𝑋 ) = ( 𝑆 ‘ 𝑋 ) ) |
| 45 |
8 37 44
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) ‘ 𝑋 ) = ( 𝑆 ‘ 𝑋 ) ) |