| Step |
Hyp |
Ref |
Expression |
| 1 |
|
spllen.s |
⊢ ( 𝜑 → 𝑆 ∈ Word 𝐴 ) |
| 2 |
|
spllen.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 0 ... 𝑇 ) ) |
| 3 |
|
spllen.t |
⊢ ( 𝜑 → 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) |
| 4 |
|
spllen.r |
⊢ ( 𝜑 → 𝑅 ∈ Word 𝐴 ) |
| 5 |
|
splfv2a.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝑅 ) ) ) |
| 6 |
|
splval |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ ( 𝐹 ∈ ( 0 ... 𝑇 ) ∧ 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ∧ 𝑅 ∈ Word 𝐴 ) ) → ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) = ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) |
| 7 |
1 2 3 4 6
|
syl13anc |
⊢ ( 𝜑 → ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) = ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ) |
| 8 |
|
elfznn0 |
⊢ ( 𝐹 ∈ ( 0 ... 𝑇 ) → 𝐹 ∈ ℕ0 ) |
| 9 |
2 8
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ℕ0 ) |
| 10 |
9
|
nn0cnd |
⊢ ( 𝜑 → 𝐹 ∈ ℂ ) |
| 11 |
|
elfzonn0 |
⊢ ( 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝑅 ) ) → 𝑋 ∈ ℕ0 ) |
| 12 |
5 11
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ ℕ0 ) |
| 13 |
12
|
nn0cnd |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 14 |
10 13
|
addcomd |
⊢ ( 𝜑 → ( 𝐹 + 𝑋 ) = ( 𝑋 + 𝐹 ) ) |
| 15 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 16 |
9 15
|
eleqtrdi |
⊢ ( 𝜑 → 𝐹 ∈ ( ℤ≥ ‘ 0 ) ) |
| 17 |
|
elfzuz3 |
⊢ ( 𝑇 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) → ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 𝑇 ) ) |
| 18 |
3 17
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 𝑇 ) ) |
| 19 |
|
elfzuz3 |
⊢ ( 𝐹 ∈ ( 0 ... 𝑇 ) → 𝑇 ∈ ( ℤ≥ ‘ 𝐹 ) ) |
| 20 |
2 19
|
syl |
⊢ ( 𝜑 → 𝑇 ∈ ( ℤ≥ ‘ 𝐹 ) ) |
| 21 |
|
uztrn |
⊢ ( ( ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 𝑇 ) ∧ 𝑇 ∈ ( ℤ≥ ‘ 𝐹 ) ) → ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 𝐹 ) ) |
| 22 |
18 20 21
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 𝐹 ) ) |
| 23 |
|
elfzuzb |
⊢ ( 𝐹 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ↔ ( 𝐹 ∈ ( ℤ≥ ‘ 0 ) ∧ ( ♯ ‘ 𝑆 ) ∈ ( ℤ≥ ‘ 𝐹 ) ) ) |
| 24 |
16 22 23
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) |
| 25 |
|
pfxlen |
⊢ ( ( 𝑆 ∈ Word 𝐴 ∧ 𝐹 ∈ ( 0 ... ( ♯ ‘ 𝑆 ) ) ) → ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) = 𝐹 ) |
| 26 |
1 24 25
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) = 𝐹 ) |
| 27 |
26
|
oveq2d |
⊢ ( 𝜑 → ( 𝑋 + ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) ) = ( 𝑋 + 𝐹 ) ) |
| 28 |
14 27
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐹 + 𝑋 ) = ( 𝑋 + ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) ) ) |
| 29 |
7 28
|
fveq12d |
⊢ ( 𝜑 → ( ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) ‘ ( 𝐹 + 𝑋 ) ) = ( ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ‘ ( 𝑋 + ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) ) ) ) |
| 30 |
|
pfxcl |
⊢ ( 𝑆 ∈ Word 𝐴 → ( 𝑆 prefix 𝐹 ) ∈ Word 𝐴 ) |
| 31 |
1 30
|
syl |
⊢ ( 𝜑 → ( 𝑆 prefix 𝐹 ) ∈ Word 𝐴 ) |
| 32 |
|
ccatcl |
⊢ ( ( ( 𝑆 prefix 𝐹 ) ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴 ) → ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ∈ Word 𝐴 ) |
| 33 |
31 4 32
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ∈ Word 𝐴 ) |
| 34 |
|
swrdcl |
⊢ ( 𝑆 ∈ Word 𝐴 → ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ∈ Word 𝐴 ) |
| 35 |
1 34
|
syl |
⊢ ( 𝜑 → ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ∈ Word 𝐴 ) |
| 36 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 37 |
|
nn0addcl |
⊢ ( ( 0 ∈ ℕ0 ∧ 𝐹 ∈ ℕ0 ) → ( 0 + 𝐹 ) ∈ ℕ0 ) |
| 38 |
36 9 37
|
sylancr |
⊢ ( 𝜑 → ( 0 + 𝐹 ) ∈ ℕ0 ) |
| 39 |
|
fzoss1 |
⊢ ( ( 0 + 𝐹 ) ∈ ( ℤ≥ ‘ 0 ) → ( ( 0 + 𝐹 ) ..^ ( ( ♯ ‘ 𝑅 ) + 𝐹 ) ) ⊆ ( 0 ..^ ( ( ♯ ‘ 𝑅 ) + 𝐹 ) ) ) |
| 40 |
39 15
|
eleq2s |
⊢ ( ( 0 + 𝐹 ) ∈ ℕ0 → ( ( 0 + 𝐹 ) ..^ ( ( ♯ ‘ 𝑅 ) + 𝐹 ) ) ⊆ ( 0 ..^ ( ( ♯ ‘ 𝑅 ) + 𝐹 ) ) ) |
| 41 |
38 40
|
syl |
⊢ ( 𝜑 → ( ( 0 + 𝐹 ) ..^ ( ( ♯ ‘ 𝑅 ) + 𝐹 ) ) ⊆ ( 0 ..^ ( ( ♯ ‘ 𝑅 ) + 𝐹 ) ) ) |
| 42 |
|
ccatlen |
⊢ ( ( ( 𝑆 prefix 𝐹 ) ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴 ) → ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) = ( ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) + ( ♯ ‘ 𝑅 ) ) ) |
| 43 |
31 4 42
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) = ( ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) + ( ♯ ‘ 𝑅 ) ) ) |
| 44 |
26
|
oveq1d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) + ( ♯ ‘ 𝑅 ) ) = ( 𝐹 + ( ♯ ‘ 𝑅 ) ) ) |
| 45 |
|
lencl |
⊢ ( 𝑅 ∈ Word 𝐴 → ( ♯ ‘ 𝑅 ) ∈ ℕ0 ) |
| 46 |
4 45
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑅 ) ∈ ℕ0 ) |
| 47 |
46
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑅 ) ∈ ℂ ) |
| 48 |
10 47
|
addcomd |
⊢ ( 𝜑 → ( 𝐹 + ( ♯ ‘ 𝑅 ) ) = ( ( ♯ ‘ 𝑅 ) + 𝐹 ) ) |
| 49 |
43 44 48
|
3eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) = ( ( ♯ ‘ 𝑅 ) + 𝐹 ) ) |
| 50 |
49
|
oveq2d |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) ) = ( 0 ..^ ( ( ♯ ‘ 𝑅 ) + 𝐹 ) ) ) |
| 51 |
41 50
|
sseqtrrd |
⊢ ( 𝜑 → ( ( 0 + 𝐹 ) ..^ ( ( ♯ ‘ 𝑅 ) + 𝐹 ) ) ⊆ ( 0 ..^ ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) ) ) |
| 52 |
9
|
nn0zd |
⊢ ( 𝜑 → 𝐹 ∈ ℤ ) |
| 53 |
|
fzoaddel |
⊢ ( ( 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝑅 ) ) ∧ 𝐹 ∈ ℤ ) → ( 𝑋 + 𝐹 ) ∈ ( ( 0 + 𝐹 ) ..^ ( ( ♯ ‘ 𝑅 ) + 𝐹 ) ) ) |
| 54 |
5 52 53
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 + 𝐹 ) ∈ ( ( 0 + 𝐹 ) ..^ ( ( ♯ ‘ 𝑅 ) + 𝐹 ) ) ) |
| 55 |
51 54
|
sseldd |
⊢ ( 𝜑 → ( 𝑋 + 𝐹 ) ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) ) ) |
| 56 |
27 55
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑋 + ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) ) ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) ) ) |
| 57 |
|
ccatval1 |
⊢ ( ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ∈ Word 𝐴 ∧ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ∈ Word 𝐴 ∧ ( 𝑋 + ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) ) ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ) ) ) → ( ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ‘ ( 𝑋 + ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) ) ) = ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ‘ ( 𝑋 + ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) ) ) ) |
| 58 |
33 35 56 57
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ++ ( 𝑆 substr 〈 𝑇 , ( ♯ ‘ 𝑆 ) 〉 ) ) ‘ ( 𝑋 + ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) ) ) = ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ‘ ( 𝑋 + ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) ) ) ) |
| 59 |
|
ccatval3 |
⊢ ( ( ( 𝑆 prefix 𝐹 ) ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝑅 ) ) ) → ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ‘ ( 𝑋 + ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) ) ) = ( 𝑅 ‘ 𝑋 ) ) |
| 60 |
31 4 5 59
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑆 prefix 𝐹 ) ++ 𝑅 ) ‘ ( 𝑋 + ( ♯ ‘ ( 𝑆 prefix 𝐹 ) ) ) ) = ( 𝑅 ‘ 𝑋 ) ) |
| 61 |
29 58 60
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑆 splice 〈 𝐹 , 𝑇 , 𝑅 〉 ) ‘ ( 𝐹 + 𝑋 ) ) = ( 𝑅 ‘ 𝑋 ) ) |