| Step |
Hyp |
Ref |
Expression |
| 1 |
|
spllen.s |
|- ( ph -> S e. Word A ) |
| 2 |
|
spllen.f |
|- ( ph -> F e. ( 0 ... T ) ) |
| 3 |
|
spllen.t |
|- ( ph -> T e. ( 0 ... ( # ` S ) ) ) |
| 4 |
|
spllen.r |
|- ( ph -> R e. Word A ) |
| 5 |
|
splfv2a.x |
|- ( ph -> X e. ( 0 ..^ ( # ` R ) ) ) |
| 6 |
|
splval |
|- ( ( S e. Word A /\ ( F e. ( 0 ... T ) /\ T e. ( 0 ... ( # ` S ) ) /\ R e. Word A ) ) -> ( S splice <. F , T , R >. ) = ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ) |
| 7 |
1 2 3 4 6
|
syl13anc |
|- ( ph -> ( S splice <. F , T , R >. ) = ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ) |
| 8 |
|
elfznn0 |
|- ( F e. ( 0 ... T ) -> F e. NN0 ) |
| 9 |
2 8
|
syl |
|- ( ph -> F e. NN0 ) |
| 10 |
9
|
nn0cnd |
|- ( ph -> F e. CC ) |
| 11 |
|
elfzonn0 |
|- ( X e. ( 0 ..^ ( # ` R ) ) -> X e. NN0 ) |
| 12 |
5 11
|
syl |
|- ( ph -> X e. NN0 ) |
| 13 |
12
|
nn0cnd |
|- ( ph -> X e. CC ) |
| 14 |
10 13
|
addcomd |
|- ( ph -> ( F + X ) = ( X + F ) ) |
| 15 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 16 |
9 15
|
eleqtrdi |
|- ( ph -> F e. ( ZZ>= ` 0 ) ) |
| 17 |
|
elfzuz3 |
|- ( T e. ( 0 ... ( # ` S ) ) -> ( # ` S ) e. ( ZZ>= ` T ) ) |
| 18 |
3 17
|
syl |
|- ( ph -> ( # ` S ) e. ( ZZ>= ` T ) ) |
| 19 |
|
elfzuz3 |
|- ( F e. ( 0 ... T ) -> T e. ( ZZ>= ` F ) ) |
| 20 |
2 19
|
syl |
|- ( ph -> T e. ( ZZ>= ` F ) ) |
| 21 |
|
uztrn |
|- ( ( ( # ` S ) e. ( ZZ>= ` T ) /\ T e. ( ZZ>= ` F ) ) -> ( # ` S ) e. ( ZZ>= ` F ) ) |
| 22 |
18 20 21
|
syl2anc |
|- ( ph -> ( # ` S ) e. ( ZZ>= ` F ) ) |
| 23 |
|
elfzuzb |
|- ( F e. ( 0 ... ( # ` S ) ) <-> ( F e. ( ZZ>= ` 0 ) /\ ( # ` S ) e. ( ZZ>= ` F ) ) ) |
| 24 |
16 22 23
|
sylanbrc |
|- ( ph -> F e. ( 0 ... ( # ` S ) ) ) |
| 25 |
|
pfxlen |
|- ( ( S e. Word A /\ F e. ( 0 ... ( # ` S ) ) ) -> ( # ` ( S prefix F ) ) = F ) |
| 26 |
1 24 25
|
syl2anc |
|- ( ph -> ( # ` ( S prefix F ) ) = F ) |
| 27 |
26
|
oveq2d |
|- ( ph -> ( X + ( # ` ( S prefix F ) ) ) = ( X + F ) ) |
| 28 |
14 27
|
eqtr4d |
|- ( ph -> ( F + X ) = ( X + ( # ` ( S prefix F ) ) ) ) |
| 29 |
7 28
|
fveq12d |
|- ( ph -> ( ( S splice <. F , T , R >. ) ` ( F + X ) ) = ( ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ` ( X + ( # ` ( S prefix F ) ) ) ) ) |
| 30 |
|
pfxcl |
|- ( S e. Word A -> ( S prefix F ) e. Word A ) |
| 31 |
1 30
|
syl |
|- ( ph -> ( S prefix F ) e. Word A ) |
| 32 |
|
ccatcl |
|- ( ( ( S prefix F ) e. Word A /\ R e. Word A ) -> ( ( S prefix F ) ++ R ) e. Word A ) |
| 33 |
31 4 32
|
syl2anc |
|- ( ph -> ( ( S prefix F ) ++ R ) e. Word A ) |
| 34 |
|
swrdcl |
|- ( S e. Word A -> ( S substr <. T , ( # ` S ) >. ) e. Word A ) |
| 35 |
1 34
|
syl |
|- ( ph -> ( S substr <. T , ( # ` S ) >. ) e. Word A ) |
| 36 |
|
0nn0 |
|- 0 e. NN0 |
| 37 |
|
nn0addcl |
|- ( ( 0 e. NN0 /\ F e. NN0 ) -> ( 0 + F ) e. NN0 ) |
| 38 |
36 9 37
|
sylancr |
|- ( ph -> ( 0 + F ) e. NN0 ) |
| 39 |
|
fzoss1 |
|- ( ( 0 + F ) e. ( ZZ>= ` 0 ) -> ( ( 0 + F ) ..^ ( ( # ` R ) + F ) ) C_ ( 0 ..^ ( ( # ` R ) + F ) ) ) |
| 40 |
39 15
|
eleq2s |
|- ( ( 0 + F ) e. NN0 -> ( ( 0 + F ) ..^ ( ( # ` R ) + F ) ) C_ ( 0 ..^ ( ( # ` R ) + F ) ) ) |
| 41 |
38 40
|
syl |
|- ( ph -> ( ( 0 + F ) ..^ ( ( # ` R ) + F ) ) C_ ( 0 ..^ ( ( # ` R ) + F ) ) ) |
| 42 |
|
ccatlen |
|- ( ( ( S prefix F ) e. Word A /\ R e. Word A ) -> ( # ` ( ( S prefix F ) ++ R ) ) = ( ( # ` ( S prefix F ) ) + ( # ` R ) ) ) |
| 43 |
31 4 42
|
syl2anc |
|- ( ph -> ( # ` ( ( S prefix F ) ++ R ) ) = ( ( # ` ( S prefix F ) ) + ( # ` R ) ) ) |
| 44 |
26
|
oveq1d |
|- ( ph -> ( ( # ` ( S prefix F ) ) + ( # ` R ) ) = ( F + ( # ` R ) ) ) |
| 45 |
|
lencl |
|- ( R e. Word A -> ( # ` R ) e. NN0 ) |
| 46 |
4 45
|
syl |
|- ( ph -> ( # ` R ) e. NN0 ) |
| 47 |
46
|
nn0cnd |
|- ( ph -> ( # ` R ) e. CC ) |
| 48 |
10 47
|
addcomd |
|- ( ph -> ( F + ( # ` R ) ) = ( ( # ` R ) + F ) ) |
| 49 |
43 44 48
|
3eqtrd |
|- ( ph -> ( # ` ( ( S prefix F ) ++ R ) ) = ( ( # ` R ) + F ) ) |
| 50 |
49
|
oveq2d |
|- ( ph -> ( 0 ..^ ( # ` ( ( S prefix F ) ++ R ) ) ) = ( 0 ..^ ( ( # ` R ) + F ) ) ) |
| 51 |
41 50
|
sseqtrrd |
|- ( ph -> ( ( 0 + F ) ..^ ( ( # ` R ) + F ) ) C_ ( 0 ..^ ( # ` ( ( S prefix F ) ++ R ) ) ) ) |
| 52 |
9
|
nn0zd |
|- ( ph -> F e. ZZ ) |
| 53 |
|
fzoaddel |
|- ( ( X e. ( 0 ..^ ( # ` R ) ) /\ F e. ZZ ) -> ( X + F ) e. ( ( 0 + F ) ..^ ( ( # ` R ) + F ) ) ) |
| 54 |
5 52 53
|
syl2anc |
|- ( ph -> ( X + F ) e. ( ( 0 + F ) ..^ ( ( # ` R ) + F ) ) ) |
| 55 |
51 54
|
sseldd |
|- ( ph -> ( X + F ) e. ( 0 ..^ ( # ` ( ( S prefix F ) ++ R ) ) ) ) |
| 56 |
27 55
|
eqeltrd |
|- ( ph -> ( X + ( # ` ( S prefix F ) ) ) e. ( 0 ..^ ( # ` ( ( S prefix F ) ++ R ) ) ) ) |
| 57 |
|
ccatval1 |
|- ( ( ( ( S prefix F ) ++ R ) e. Word A /\ ( S substr <. T , ( # ` S ) >. ) e. Word A /\ ( X + ( # ` ( S prefix F ) ) ) e. ( 0 ..^ ( # ` ( ( S prefix F ) ++ R ) ) ) ) -> ( ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ` ( X + ( # ` ( S prefix F ) ) ) ) = ( ( ( S prefix F ) ++ R ) ` ( X + ( # ` ( S prefix F ) ) ) ) ) |
| 58 |
33 35 56 57
|
syl3anc |
|- ( ph -> ( ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ` ( X + ( # ` ( S prefix F ) ) ) ) = ( ( ( S prefix F ) ++ R ) ` ( X + ( # ` ( S prefix F ) ) ) ) ) |
| 59 |
|
ccatval3 |
|- ( ( ( S prefix F ) e. Word A /\ R e. Word A /\ X e. ( 0 ..^ ( # ` R ) ) ) -> ( ( ( S prefix F ) ++ R ) ` ( X + ( # ` ( S prefix F ) ) ) ) = ( R ` X ) ) |
| 60 |
31 4 5 59
|
syl3anc |
|- ( ph -> ( ( ( S prefix F ) ++ R ) ` ( X + ( # ` ( S prefix F ) ) ) ) = ( R ` X ) ) |
| 61 |
29 58 60
|
3eqtrd |
|- ( ph -> ( ( S splice <. F , T , R >. ) ` ( F + X ) ) = ( R ` X ) ) |