Step |
Hyp |
Ref |
Expression |
1 |
|
splval2.a |
|- ( ph -> A e. Word X ) |
2 |
|
splval2.b |
|- ( ph -> B e. Word X ) |
3 |
|
splval2.c |
|- ( ph -> C e. Word X ) |
4 |
|
splval2.r |
|- ( ph -> R e. Word X ) |
5 |
|
splval2.s |
|- ( ph -> S = ( ( A ++ B ) ++ C ) ) |
6 |
|
splval2.f |
|- ( ph -> F = ( # ` A ) ) |
7 |
|
splval2.t |
|- ( ph -> T = ( F + ( # ` B ) ) ) |
8 |
|
ccatcl |
|- ( ( A e. Word X /\ B e. Word X ) -> ( A ++ B ) e. Word X ) |
9 |
1 2 8
|
syl2anc |
|- ( ph -> ( A ++ B ) e. Word X ) |
10 |
|
ccatcl |
|- ( ( ( A ++ B ) e. Word X /\ C e. Word X ) -> ( ( A ++ B ) ++ C ) e. Word X ) |
11 |
9 3 10
|
syl2anc |
|- ( ph -> ( ( A ++ B ) ++ C ) e. Word X ) |
12 |
5 11
|
eqeltrd |
|- ( ph -> S e. Word X ) |
13 |
|
lencl |
|- ( A e. Word X -> ( # ` A ) e. NN0 ) |
14 |
1 13
|
syl |
|- ( ph -> ( # ` A ) e. NN0 ) |
15 |
6 14
|
eqeltrd |
|- ( ph -> F e. NN0 ) |
16 |
|
lencl |
|- ( B e. Word X -> ( # ` B ) e. NN0 ) |
17 |
2 16
|
syl |
|- ( ph -> ( # ` B ) e. NN0 ) |
18 |
15 17
|
nn0addcld |
|- ( ph -> ( F + ( # ` B ) ) e. NN0 ) |
19 |
7 18
|
eqeltrd |
|- ( ph -> T e. NN0 ) |
20 |
|
splval |
|- ( ( S e. Word X /\ ( F e. NN0 /\ T e. NN0 /\ R e. Word X ) ) -> ( S splice <. F , T , R >. ) = ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ) |
21 |
12 15 19 4 20
|
syl13anc |
|- ( ph -> ( S splice <. F , T , R >. ) = ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) ) |
22 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
23 |
15 22
|
eleqtrdi |
|- ( ph -> F e. ( ZZ>= ` 0 ) ) |
24 |
15
|
nn0zd |
|- ( ph -> F e. ZZ ) |
25 |
24
|
uzidd |
|- ( ph -> F e. ( ZZ>= ` F ) ) |
26 |
|
uzaddcl |
|- ( ( F e. ( ZZ>= ` F ) /\ ( # ` B ) e. NN0 ) -> ( F + ( # ` B ) ) e. ( ZZ>= ` F ) ) |
27 |
25 17 26
|
syl2anc |
|- ( ph -> ( F + ( # ` B ) ) e. ( ZZ>= ` F ) ) |
28 |
7 27
|
eqeltrd |
|- ( ph -> T e. ( ZZ>= ` F ) ) |
29 |
|
elfzuzb |
|- ( F e. ( 0 ... T ) <-> ( F e. ( ZZ>= ` 0 ) /\ T e. ( ZZ>= ` F ) ) ) |
30 |
23 28 29
|
sylanbrc |
|- ( ph -> F e. ( 0 ... T ) ) |
31 |
19 22
|
eleqtrdi |
|- ( ph -> T e. ( ZZ>= ` 0 ) ) |
32 |
|
ccatlen |
|- ( ( ( A ++ B ) e. Word X /\ C e. Word X ) -> ( # ` ( ( A ++ B ) ++ C ) ) = ( ( # ` ( A ++ B ) ) + ( # ` C ) ) ) |
33 |
9 3 32
|
syl2anc |
|- ( ph -> ( # ` ( ( A ++ B ) ++ C ) ) = ( ( # ` ( A ++ B ) ) + ( # ` C ) ) ) |
34 |
5
|
fveq2d |
|- ( ph -> ( # ` S ) = ( # ` ( ( A ++ B ) ++ C ) ) ) |
35 |
6
|
oveq1d |
|- ( ph -> ( F + ( # ` B ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
36 |
|
ccatlen |
|- ( ( A e. Word X /\ B e. Word X ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
37 |
1 2 36
|
syl2anc |
|- ( ph -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
38 |
35 7 37
|
3eqtr4d |
|- ( ph -> T = ( # ` ( A ++ B ) ) ) |
39 |
38
|
oveq1d |
|- ( ph -> ( T + ( # ` C ) ) = ( ( # ` ( A ++ B ) ) + ( # ` C ) ) ) |
40 |
33 34 39
|
3eqtr4d |
|- ( ph -> ( # ` S ) = ( T + ( # ` C ) ) ) |
41 |
19
|
nn0zd |
|- ( ph -> T e. ZZ ) |
42 |
41
|
uzidd |
|- ( ph -> T e. ( ZZ>= ` T ) ) |
43 |
|
lencl |
|- ( C e. Word X -> ( # ` C ) e. NN0 ) |
44 |
3 43
|
syl |
|- ( ph -> ( # ` C ) e. NN0 ) |
45 |
|
uzaddcl |
|- ( ( T e. ( ZZ>= ` T ) /\ ( # ` C ) e. NN0 ) -> ( T + ( # ` C ) ) e. ( ZZ>= ` T ) ) |
46 |
42 44 45
|
syl2anc |
|- ( ph -> ( T + ( # ` C ) ) e. ( ZZ>= ` T ) ) |
47 |
40 46
|
eqeltrd |
|- ( ph -> ( # ` S ) e. ( ZZ>= ` T ) ) |
48 |
|
elfzuzb |
|- ( T e. ( 0 ... ( # ` S ) ) <-> ( T e. ( ZZ>= ` 0 ) /\ ( # ` S ) e. ( ZZ>= ` T ) ) ) |
49 |
31 47 48
|
sylanbrc |
|- ( ph -> T e. ( 0 ... ( # ` S ) ) ) |
50 |
|
ccatpfx |
|- ( ( S e. Word X /\ F e. ( 0 ... T ) /\ T e. ( 0 ... ( # ` S ) ) ) -> ( ( S prefix F ) ++ ( S substr <. F , T >. ) ) = ( S prefix T ) ) |
51 |
12 30 49 50
|
syl3anc |
|- ( ph -> ( ( S prefix F ) ++ ( S substr <. F , T >. ) ) = ( S prefix T ) ) |
52 |
|
lencl |
|- ( S e. Word X -> ( # ` S ) e. NN0 ) |
53 |
12 52
|
syl |
|- ( ph -> ( # ` S ) e. NN0 ) |
54 |
53 22
|
eleqtrdi |
|- ( ph -> ( # ` S ) e. ( ZZ>= ` 0 ) ) |
55 |
|
eluzfz2 |
|- ( ( # ` S ) e. ( ZZ>= ` 0 ) -> ( # ` S ) e. ( 0 ... ( # ` S ) ) ) |
56 |
54 55
|
syl |
|- ( ph -> ( # ` S ) e. ( 0 ... ( # ` S ) ) ) |
57 |
|
ccatpfx |
|- ( ( S e. Word X /\ T e. ( 0 ... ( # ` S ) ) /\ ( # ` S ) e. ( 0 ... ( # ` S ) ) ) -> ( ( S prefix T ) ++ ( S substr <. T , ( # ` S ) >. ) ) = ( S prefix ( # ` S ) ) ) |
58 |
12 49 56 57
|
syl3anc |
|- ( ph -> ( ( S prefix T ) ++ ( S substr <. T , ( # ` S ) >. ) ) = ( S prefix ( # ` S ) ) ) |
59 |
|
pfxid |
|- ( S e. Word X -> ( S prefix ( # ` S ) ) = S ) |
60 |
12 59
|
syl |
|- ( ph -> ( S prefix ( # ` S ) ) = S ) |
61 |
58 60 5
|
3eqtrd |
|- ( ph -> ( ( S prefix T ) ++ ( S substr <. T , ( # ` S ) >. ) ) = ( ( A ++ B ) ++ C ) ) |
62 |
|
pfxcl |
|- ( S e. Word X -> ( S prefix T ) e. Word X ) |
63 |
12 62
|
syl |
|- ( ph -> ( S prefix T ) e. Word X ) |
64 |
|
swrdcl |
|- ( S e. Word X -> ( S substr <. T , ( # ` S ) >. ) e. Word X ) |
65 |
12 64
|
syl |
|- ( ph -> ( S substr <. T , ( # ` S ) >. ) e. Word X ) |
66 |
|
pfxlen |
|- ( ( S e. Word X /\ T e. ( 0 ... ( # ` S ) ) ) -> ( # ` ( S prefix T ) ) = T ) |
67 |
12 49 66
|
syl2anc |
|- ( ph -> ( # ` ( S prefix T ) ) = T ) |
68 |
67 38
|
eqtrd |
|- ( ph -> ( # ` ( S prefix T ) ) = ( # ` ( A ++ B ) ) ) |
69 |
|
ccatopth |
|- ( ( ( ( S prefix T ) e. Word X /\ ( S substr <. T , ( # ` S ) >. ) e. Word X ) /\ ( ( A ++ B ) e. Word X /\ C e. Word X ) /\ ( # ` ( S prefix T ) ) = ( # ` ( A ++ B ) ) ) -> ( ( ( S prefix T ) ++ ( S substr <. T , ( # ` S ) >. ) ) = ( ( A ++ B ) ++ C ) <-> ( ( S prefix T ) = ( A ++ B ) /\ ( S substr <. T , ( # ` S ) >. ) = C ) ) ) |
70 |
63 65 9 3 68 69
|
syl221anc |
|- ( ph -> ( ( ( S prefix T ) ++ ( S substr <. T , ( # ` S ) >. ) ) = ( ( A ++ B ) ++ C ) <-> ( ( S prefix T ) = ( A ++ B ) /\ ( S substr <. T , ( # ` S ) >. ) = C ) ) ) |
71 |
61 70
|
mpbid |
|- ( ph -> ( ( S prefix T ) = ( A ++ B ) /\ ( S substr <. T , ( # ` S ) >. ) = C ) ) |
72 |
71
|
simpld |
|- ( ph -> ( S prefix T ) = ( A ++ B ) ) |
73 |
51 72
|
eqtrd |
|- ( ph -> ( ( S prefix F ) ++ ( S substr <. F , T >. ) ) = ( A ++ B ) ) |
74 |
|
pfxcl |
|- ( S e. Word X -> ( S prefix F ) e. Word X ) |
75 |
12 74
|
syl |
|- ( ph -> ( S prefix F ) e. Word X ) |
76 |
|
swrdcl |
|- ( S e. Word X -> ( S substr <. F , T >. ) e. Word X ) |
77 |
12 76
|
syl |
|- ( ph -> ( S substr <. F , T >. ) e. Word X ) |
78 |
|
uztrn |
|- ( ( ( # ` S ) e. ( ZZ>= ` T ) /\ T e. ( ZZ>= ` F ) ) -> ( # ` S ) e. ( ZZ>= ` F ) ) |
79 |
47 28 78
|
syl2anc |
|- ( ph -> ( # ` S ) e. ( ZZ>= ` F ) ) |
80 |
|
elfzuzb |
|- ( F e. ( 0 ... ( # ` S ) ) <-> ( F e. ( ZZ>= ` 0 ) /\ ( # ` S ) e. ( ZZ>= ` F ) ) ) |
81 |
23 79 80
|
sylanbrc |
|- ( ph -> F e. ( 0 ... ( # ` S ) ) ) |
82 |
|
pfxlen |
|- ( ( S e. Word X /\ F e. ( 0 ... ( # ` S ) ) ) -> ( # ` ( S prefix F ) ) = F ) |
83 |
12 81 82
|
syl2anc |
|- ( ph -> ( # ` ( S prefix F ) ) = F ) |
84 |
83 6
|
eqtrd |
|- ( ph -> ( # ` ( S prefix F ) ) = ( # ` A ) ) |
85 |
|
ccatopth |
|- ( ( ( ( S prefix F ) e. Word X /\ ( S substr <. F , T >. ) e. Word X ) /\ ( A e. Word X /\ B e. Word X ) /\ ( # ` ( S prefix F ) ) = ( # ` A ) ) -> ( ( ( S prefix F ) ++ ( S substr <. F , T >. ) ) = ( A ++ B ) <-> ( ( S prefix F ) = A /\ ( S substr <. F , T >. ) = B ) ) ) |
86 |
75 77 1 2 84 85
|
syl221anc |
|- ( ph -> ( ( ( S prefix F ) ++ ( S substr <. F , T >. ) ) = ( A ++ B ) <-> ( ( S prefix F ) = A /\ ( S substr <. F , T >. ) = B ) ) ) |
87 |
73 86
|
mpbid |
|- ( ph -> ( ( S prefix F ) = A /\ ( S substr <. F , T >. ) = B ) ) |
88 |
87
|
simpld |
|- ( ph -> ( S prefix F ) = A ) |
89 |
88
|
oveq1d |
|- ( ph -> ( ( S prefix F ) ++ R ) = ( A ++ R ) ) |
90 |
71
|
simprd |
|- ( ph -> ( S substr <. T , ( # ` S ) >. ) = C ) |
91 |
89 90
|
oveq12d |
|- ( ph -> ( ( ( S prefix F ) ++ R ) ++ ( S substr <. T , ( # ` S ) >. ) ) = ( ( A ++ R ) ++ C ) ) |
92 |
21 91
|
eqtrd |
|- ( ph -> ( S splice <. F , T , R >. ) = ( ( A ++ R ) ++ C ) ) |