Metamath Proof Explorer


Theorem elunsn

Description: Elementhood to a union with a singleton. (Contributed by Thierry Arnoux, 14-Dec-2023)

Ref Expression
Assertion elunsn ( 𝐴𝑉 → ( 𝐴 ∈ ( 𝐵 ∪ { 𝐶 } ) ↔ ( 𝐴𝐵𝐴 = 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 elun ( 𝐴 ∈ ( 𝐵 ∪ { 𝐶 } ) ↔ ( 𝐴𝐵𝐴 ∈ { 𝐶 } ) )
2 elsng ( 𝐴𝑉 → ( 𝐴 ∈ { 𝐶 } ↔ 𝐴 = 𝐶 ) )
3 2 orbi2d ( 𝐴𝑉 → ( ( 𝐴𝐵𝐴 ∈ { 𝐶 } ) ↔ ( 𝐴𝐵𝐴 = 𝐶 ) ) )
4 1 3 syl5bb ( 𝐴𝑉 → ( 𝐴 ∈ ( 𝐵 ∪ { 𝐶 } ) ↔ ( 𝐴𝐵𝐴 = 𝐶 ) ) )