Metamath Proof Explorer


Theorem elunsn

Description: Elementhood to a union with a singleton. (Contributed by Thierry Arnoux, 14-Dec-2023)

Ref Expression
Assertion elunsn AVABCABA=C

Proof

Step Hyp Ref Expression
1 elun ABCABAC
2 elsng AVACA=C
3 2 orbi2d AVABACABA=C
4 1 3 bitrid AVABCABA=C