Description: Elementhood to a union with a singleton. (Contributed by Thierry Arnoux, 14-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | elunsn | |- ( A e. V -> ( A e. ( B u. { C } ) <-> ( A e. B \/ A = C ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun | |- ( A e. ( B u. { C } ) <-> ( A e. B \/ A e. { C } ) ) |
|
2 | elsng | |- ( A e. V -> ( A e. { C } <-> A = C ) ) |
|
3 | 2 | orbi2d | |- ( A e. V -> ( ( A e. B \/ A e. { C } ) <-> ( A e. B \/ A = C ) ) ) |
4 | 1 3 | syl5bb | |- ( A e. V -> ( A e. ( B u. { C } ) <-> ( A e. B \/ A = C ) ) ) |