Metamath Proof Explorer


Theorem nelun

Description: Negated membership for a union. (Contributed by Thierry Arnoux, 13-Dec-2023)

Ref Expression
Assertion nelun A=BC¬XA¬XB¬XC

Proof

Step Hyp Ref Expression
1 eleq2 A=BCXAXBC
2 elun XBCXBXC
3 1 2 bitrdi A=BCXAXBXC
4 3 notbid A=BC¬XA¬XBXC
5 ioran ¬XBXC¬XB¬XC
6 4 5 bitrdi A=BC¬XA¬XB¬XC