Description: Negated membership for a union. (Contributed by Thierry Arnoux, 13-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | nelun | ⊢ ( 𝐴 = ( 𝐵 ∪ 𝐶 ) → ( ¬ 𝑋 ∈ 𝐴 ↔ ( ¬ 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝐶 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 | ⊢ ( 𝐴 = ( 𝐵 ∪ 𝐶 ) → ( 𝑋 ∈ 𝐴 ↔ 𝑋 ∈ ( 𝐵 ∪ 𝐶 ) ) ) | |
2 | elun | ⊢ ( 𝑋 ∈ ( 𝐵 ∪ 𝐶 ) ↔ ( 𝑋 ∈ 𝐵 ∨ 𝑋 ∈ 𝐶 ) ) | |
3 | 1 2 | bitrdi | ⊢ ( 𝐴 = ( 𝐵 ∪ 𝐶 ) → ( 𝑋 ∈ 𝐴 ↔ ( 𝑋 ∈ 𝐵 ∨ 𝑋 ∈ 𝐶 ) ) ) |
4 | 3 | notbid | ⊢ ( 𝐴 = ( 𝐵 ∪ 𝐶 ) → ( ¬ 𝑋 ∈ 𝐴 ↔ ¬ ( 𝑋 ∈ 𝐵 ∨ 𝑋 ∈ 𝐶 ) ) ) |
5 | ioran | ⊢ ( ¬ ( 𝑋 ∈ 𝐵 ∨ 𝑋 ∈ 𝐶 ) ↔ ( ¬ 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝐶 ) ) | |
6 | 4 5 | bitrdi | ⊢ ( 𝐴 = ( 𝐵 ∪ 𝐶 ) → ( ¬ 𝑋 ∈ 𝐴 ↔ ( ¬ 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝐶 ) ) ) |