Description: Negated membership for a union. (Contributed by Thierry Arnoux, 13-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nelun | ⊢ ( 𝐴 = ( 𝐵 ∪ 𝐶 ) → ( ¬ 𝑋 ∈ 𝐴 ↔ ( ¬ 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 | ⊢ ( 𝐴 = ( 𝐵 ∪ 𝐶 ) → ( 𝑋 ∈ 𝐴 ↔ 𝑋 ∈ ( 𝐵 ∪ 𝐶 ) ) ) | |
| 2 | elun | ⊢ ( 𝑋 ∈ ( 𝐵 ∪ 𝐶 ) ↔ ( 𝑋 ∈ 𝐵 ∨ 𝑋 ∈ 𝐶 ) ) | |
| 3 | 1 2 | bitrdi | ⊢ ( 𝐴 = ( 𝐵 ∪ 𝐶 ) → ( 𝑋 ∈ 𝐴 ↔ ( 𝑋 ∈ 𝐵 ∨ 𝑋 ∈ 𝐶 ) ) ) |
| 4 | 3 | notbid | ⊢ ( 𝐴 = ( 𝐵 ∪ 𝐶 ) → ( ¬ 𝑋 ∈ 𝐴 ↔ ¬ ( 𝑋 ∈ 𝐵 ∨ 𝑋 ∈ 𝐶 ) ) ) |
| 5 | ioran | ⊢ ( ¬ ( 𝑋 ∈ 𝐵 ∨ 𝑋 ∈ 𝐶 ) ↔ ( ¬ 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝐶 ) ) | |
| 6 | 4 5 | bitrdi | ⊢ ( 𝐴 = ( 𝐵 ∪ 𝐶 ) → ( ¬ 𝑋 ∈ 𝐴 ↔ ( ¬ 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝐶 ) ) ) |