Metamath Proof Explorer


Theorem nelun

Description: Negated membership for a union. (Contributed by Thierry Arnoux, 13-Dec-2023)

Ref Expression
Assertion nelun ( 𝐴 = ( 𝐵𝐶 ) → ( ¬ 𝑋𝐴 ↔ ( ¬ 𝑋𝐵 ∧ ¬ 𝑋𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 eleq2 ( 𝐴 = ( 𝐵𝐶 ) → ( 𝑋𝐴𝑋 ∈ ( 𝐵𝐶 ) ) )
2 elun ( 𝑋 ∈ ( 𝐵𝐶 ) ↔ ( 𝑋𝐵𝑋𝐶 ) )
3 1 2 bitrdi ( 𝐴 = ( 𝐵𝐶 ) → ( 𝑋𝐴 ↔ ( 𝑋𝐵𝑋𝐶 ) ) )
4 3 notbid ( 𝐴 = ( 𝐵𝐶 ) → ( ¬ 𝑋𝐴 ↔ ¬ ( 𝑋𝐵𝑋𝐶 ) ) )
5 ioran ( ¬ ( 𝑋𝐵𝑋𝐶 ) ↔ ( ¬ 𝑋𝐵 ∧ ¬ 𝑋𝐶 ) )
6 4 5 bitrdi ( 𝐴 = ( 𝐵𝐶 ) → ( ¬ 𝑋𝐴 ↔ ( ¬ 𝑋𝐵 ∧ ¬ 𝑋𝐶 ) ) )