Description: If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006) (Revised by Thierry Arnoux, 11-Apr-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | snsssng | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ { 𝐴 } ⊆ { 𝐵 } ) → 𝐴 = 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sssn | ⊢ ( { 𝐴 } ⊆ { 𝐵 } ↔ ( { 𝐴 } = ∅ ∨ { 𝐴 } = { 𝐵 } ) ) | |
2 | snnzg | ⊢ ( 𝐴 ∈ 𝑉 → { 𝐴 } ≠ ∅ ) | |
3 | 2 | neneqd | ⊢ ( 𝐴 ∈ 𝑉 → ¬ { 𝐴 } = ∅ ) |
4 | 3 | pm2.21d | ⊢ ( 𝐴 ∈ 𝑉 → ( { 𝐴 } = ∅ → 𝐴 = 𝐵 ) ) |
5 | sneqrg | ⊢ ( 𝐴 ∈ 𝑉 → ( { 𝐴 } = { 𝐵 } → 𝐴 = 𝐵 ) ) | |
6 | 4 5 | jaod | ⊢ ( 𝐴 ∈ 𝑉 → ( ( { 𝐴 } = ∅ ∨ { 𝐴 } = { 𝐵 } ) → 𝐴 = 𝐵 ) ) |
7 | 6 | imp | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( { 𝐴 } = ∅ ∨ { 𝐴 } = { 𝐵 } ) ) → 𝐴 = 𝐵 ) |
8 | 1 7 | sylan2b | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ { 𝐴 } ⊆ { 𝐵 } ) → 𝐴 = 𝐵 ) |