Metamath Proof Explorer


Theorem snsssng

Description: If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006) (Revised by Thierry Arnoux, 11-Apr-2024)

Ref Expression
Assertion snsssng ( ( 𝐴𝑉 ∧ { 𝐴 } ⊆ { 𝐵 } ) → 𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 sssn ( { 𝐴 } ⊆ { 𝐵 } ↔ ( { 𝐴 } = ∅ ∨ { 𝐴 } = { 𝐵 } ) )
2 snnzg ( 𝐴𝑉 → { 𝐴 } ≠ ∅ )
3 2 neneqd ( 𝐴𝑉 → ¬ { 𝐴 } = ∅ )
4 3 pm2.21d ( 𝐴𝑉 → ( { 𝐴 } = ∅ → 𝐴 = 𝐵 ) )
5 sneqrg ( 𝐴𝑉 → ( { 𝐴 } = { 𝐵 } → 𝐴 = 𝐵 ) )
6 4 5 jaod ( 𝐴𝑉 → ( ( { 𝐴 } = ∅ ∨ { 𝐴 } = { 𝐵 } ) → 𝐴 = 𝐵 ) )
7 6 imp ( ( 𝐴𝑉 ∧ ( { 𝐴 } = ∅ ∨ { 𝐴 } = { 𝐵 } ) ) → 𝐴 = 𝐵 )
8 1 7 sylan2b ( ( 𝐴𝑉 ∧ { 𝐴 } ⊆ { 𝐵 } ) → 𝐴 = 𝐵 )