Metamath Proof Explorer


Theorem snsssng

Description: If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006) (Revised by Thierry Arnoux, 11-Apr-2024)

Ref Expression
Assertion snsssng
|- ( ( A e. V /\ { A } C_ { B } ) -> A = B )

Proof

Step Hyp Ref Expression
1 sssn
 |-  ( { A } C_ { B } <-> ( { A } = (/) \/ { A } = { B } ) )
2 snnzg
 |-  ( A e. V -> { A } =/= (/) )
3 2 neneqd
 |-  ( A e. V -> -. { A } = (/) )
4 3 pm2.21d
 |-  ( A e. V -> ( { A } = (/) -> A = B ) )
5 sneqrg
 |-  ( A e. V -> ( { A } = { B } -> A = B ) )
6 4 5 jaod
 |-  ( A e. V -> ( ( { A } = (/) \/ { A } = { B } ) -> A = B ) )
7 6 imp
 |-  ( ( A e. V /\ ( { A } = (/) \/ { A } = { B } ) ) -> A = B )
8 1 7 sylan2b
 |-  ( ( A e. V /\ { A } C_ { B } ) -> A = B )