Description: If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006) (Revised by Thierry Arnoux, 11-Apr-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | snsssng | |- ( ( A e. V /\ { A } C_ { B } ) -> A = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sssn | |- ( { A } C_ { B } <-> ( { A } = (/) \/ { A } = { B } ) ) |
|
2 | snnzg | |- ( A e. V -> { A } =/= (/) ) |
|
3 | 2 | neneqd | |- ( A e. V -> -. { A } = (/) ) |
4 | 3 | pm2.21d | |- ( A e. V -> ( { A } = (/) -> A = B ) ) |
5 | sneqrg | |- ( A e. V -> ( { A } = { B } -> A = B ) ) |
|
6 | 4 5 | jaod | |- ( A e. V -> ( ( { A } = (/) \/ { A } = { B } ) -> A = B ) ) |
7 | 6 | imp | |- ( ( A e. V /\ ( { A } = (/) \/ { A } = { B } ) ) -> A = B ) |
8 | 1 7 | sylan2b | |- ( ( A e. V /\ { A } C_ { B } ) -> A = B ) |