Description: If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006) (Revised by Thierry Arnoux, 11-Apr-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | snsssng |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sssn | ||
2 | snnzg | ||
3 | 2 | neneqd | |
4 | 3 | pm2.21d | |
5 | sneqrg | ||
6 | 4 5 | jaod | |
7 | 6 | imp | |
8 | 1 7 | sylan2b |