Description: If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006) (Revised by Thierry Arnoux, 11-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | snsssng |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sssn | ||
| 2 | snnzg | ||
| 3 | 2 | neneqd | |
| 4 | 3 | pm2.21d | |
| 5 | sneqrg | ||
| 6 | 4 5 | jaod | |
| 7 | 6 | imp | |
| 8 | 1 7 | sylan2b |