| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycpmco2.c |  |-  M = ( toCyc ` D ) | 
						
							| 2 |  | cycpmco2.s |  |-  S = ( SymGrp ` D ) | 
						
							| 3 |  | cycpmco2.d |  |-  ( ph -> D e. V ) | 
						
							| 4 |  | cycpmco2.w |  |-  ( ph -> W e. dom M ) | 
						
							| 5 |  | cycpmco2.i |  |-  ( ph -> I e. ( D \ ran W ) ) | 
						
							| 6 |  | cycpmco2.j |  |-  ( ph -> J e. ran W ) | 
						
							| 7 |  | cycpmco2.e |  |-  E = ( ( `' W ` J ) + 1 ) | 
						
							| 8 |  | cycpmco2.1 |  |-  U = ( W splice <. E , E , <" I "> >. ) | 
						
							| 9 |  | ovexd |  |-  ( ph -> ( ( `' W ` J ) + 1 ) e. _V ) | 
						
							| 10 | 7 9 | eqeltrid |  |-  ( ph -> E e. _V ) | 
						
							| 11 | 5 | eldifad |  |-  ( ph -> I e. D ) | 
						
							| 12 | 11 | s1cld |  |-  ( ph -> <" I "> e. Word D ) | 
						
							| 13 |  | splval |  |-  ( ( W e. dom M /\ ( E e. _V /\ E e. _V /\ <" I "> e. Word D ) ) -> ( W splice <. E , E , <" I "> >. ) = ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) | 
						
							| 14 | 4 10 10 12 13 | syl13anc |  |-  ( ph -> ( W splice <. E , E , <" I "> >. ) = ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) | 
						
							| 15 | 8 14 | eqtrid |  |-  ( ph -> U = ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) | 
						
							| 16 | 15 | fveq1d |  |-  ( ph -> ( U ` E ) = ( ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ` E ) ) | 
						
							| 17 |  | ssrab2 |  |-  { w e. Word D | w : dom w -1-1-> D } C_ Word D | 
						
							| 18 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 19 | 1 2 18 | tocycf |  |-  ( D e. V -> M : { w e. Word D | w : dom w -1-1-> D } --> ( Base ` S ) ) | 
						
							| 20 | 3 19 | syl |  |-  ( ph -> M : { w e. Word D | w : dom w -1-1-> D } --> ( Base ` S ) ) | 
						
							| 21 | 20 | fdmd |  |-  ( ph -> dom M = { w e. Word D | w : dom w -1-1-> D } ) | 
						
							| 22 | 4 21 | eleqtrd |  |-  ( ph -> W e. { w e. Word D | w : dom w -1-1-> D } ) | 
						
							| 23 | 17 22 | sselid |  |-  ( ph -> W e. Word D ) | 
						
							| 24 |  | pfxcl |  |-  ( W e. Word D -> ( W prefix E ) e. Word D ) | 
						
							| 25 | 23 24 | syl |  |-  ( ph -> ( W prefix E ) e. Word D ) | 
						
							| 26 |  | ccatcl |  |-  ( ( ( W prefix E ) e. Word D /\ <" I "> e. Word D ) -> ( ( W prefix E ) ++ <" I "> ) e. Word D ) | 
						
							| 27 | 25 12 26 | syl2anc |  |-  ( ph -> ( ( W prefix E ) ++ <" I "> ) e. Word D ) | 
						
							| 28 |  | swrdcl |  |-  ( W e. Word D -> ( W substr <. E , ( # ` W ) >. ) e. Word D ) | 
						
							| 29 | 23 28 | syl |  |-  ( ph -> ( W substr <. E , ( # ` W ) >. ) e. Word D ) | 
						
							| 30 |  | fz0ssnn0 |  |-  ( 0 ... ( # ` W ) ) C_ NN0 | 
						
							| 31 |  | id |  |-  ( w = W -> w = W ) | 
						
							| 32 |  | dmeq |  |-  ( w = W -> dom w = dom W ) | 
						
							| 33 |  | eqidd |  |-  ( w = W -> D = D ) | 
						
							| 34 | 31 32 33 | f1eq123d |  |-  ( w = W -> ( w : dom w -1-1-> D <-> W : dom W -1-1-> D ) ) | 
						
							| 35 | 34 | elrab |  |-  ( W e. { w e. Word D | w : dom w -1-1-> D } <-> ( W e. Word D /\ W : dom W -1-1-> D ) ) | 
						
							| 36 | 22 35 | sylib |  |-  ( ph -> ( W e. Word D /\ W : dom W -1-1-> D ) ) | 
						
							| 37 | 36 | simprd |  |-  ( ph -> W : dom W -1-1-> D ) | 
						
							| 38 |  | f1cnv |  |-  ( W : dom W -1-1-> D -> `' W : ran W -1-1-onto-> dom W ) | 
						
							| 39 |  | f1of |  |-  ( `' W : ran W -1-1-onto-> dom W -> `' W : ran W --> dom W ) | 
						
							| 40 | 37 38 39 | 3syl |  |-  ( ph -> `' W : ran W --> dom W ) | 
						
							| 41 | 40 6 | ffvelcdmd |  |-  ( ph -> ( `' W ` J ) e. dom W ) | 
						
							| 42 |  | wrddm |  |-  ( W e. Word D -> dom W = ( 0 ..^ ( # ` W ) ) ) | 
						
							| 43 | 23 42 | syl |  |-  ( ph -> dom W = ( 0 ..^ ( # ` W ) ) ) | 
						
							| 44 | 41 43 | eleqtrd |  |-  ( ph -> ( `' W ` J ) e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 45 |  | fzofzp1 |  |-  ( ( `' W ` J ) e. ( 0 ..^ ( # ` W ) ) -> ( ( `' W ` J ) + 1 ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 46 | 44 45 | syl |  |-  ( ph -> ( ( `' W ` J ) + 1 ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 47 | 7 46 | eqeltrid |  |-  ( ph -> E e. ( 0 ... ( # ` W ) ) ) | 
						
							| 48 | 30 47 | sselid |  |-  ( ph -> E e. NN0 ) | 
						
							| 49 |  | fzonn0p1 |  |-  ( E e. NN0 -> E e. ( 0 ..^ ( E + 1 ) ) ) | 
						
							| 50 | 48 49 | syl |  |-  ( ph -> E e. ( 0 ..^ ( E + 1 ) ) ) | 
						
							| 51 |  | ccatws1len |  |-  ( ( W prefix E ) e. Word D -> ( # ` ( ( W prefix E ) ++ <" I "> ) ) = ( ( # ` ( W prefix E ) ) + 1 ) ) | 
						
							| 52 | 23 24 51 | 3syl |  |-  ( ph -> ( # ` ( ( W prefix E ) ++ <" I "> ) ) = ( ( # ` ( W prefix E ) ) + 1 ) ) | 
						
							| 53 |  | pfxlen |  |-  ( ( W e. Word D /\ E e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( W prefix E ) ) = E ) | 
						
							| 54 | 23 47 53 | syl2anc |  |-  ( ph -> ( # ` ( W prefix E ) ) = E ) | 
						
							| 55 | 54 | oveq1d |  |-  ( ph -> ( ( # ` ( W prefix E ) ) + 1 ) = ( E + 1 ) ) | 
						
							| 56 | 52 55 | eqtrd |  |-  ( ph -> ( # ` ( ( W prefix E ) ++ <" I "> ) ) = ( E + 1 ) ) | 
						
							| 57 | 56 | oveq2d |  |-  ( ph -> ( 0 ..^ ( # ` ( ( W prefix E ) ++ <" I "> ) ) ) = ( 0 ..^ ( E + 1 ) ) ) | 
						
							| 58 | 50 57 | eleqtrrd |  |-  ( ph -> E e. ( 0 ..^ ( # ` ( ( W prefix E ) ++ <" I "> ) ) ) ) | 
						
							| 59 |  | ccatval1 |  |-  ( ( ( ( W prefix E ) ++ <" I "> ) e. Word D /\ ( W substr <. E , ( # ` W ) >. ) e. Word D /\ E e. ( 0 ..^ ( # ` ( ( W prefix E ) ++ <" I "> ) ) ) ) -> ( ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ` E ) = ( ( ( W prefix E ) ++ <" I "> ) ` E ) ) | 
						
							| 60 | 27 29 58 59 | syl3anc |  |-  ( ph -> ( ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ` E ) = ( ( ( W prefix E ) ++ <" I "> ) ` E ) ) | 
						
							| 61 | 48 | nn0zd |  |-  ( ph -> E e. ZZ ) | 
						
							| 62 |  | elfzomin |  |-  ( E e. ZZ -> E e. ( E ..^ ( E + 1 ) ) ) | 
						
							| 63 | 61 62 | syl |  |-  ( ph -> E e. ( E ..^ ( E + 1 ) ) ) | 
						
							| 64 |  | s1len |  |-  ( # ` <" I "> ) = 1 | 
						
							| 65 | 64 | a1i |  |-  ( ph -> ( # ` <" I "> ) = 1 ) | 
						
							| 66 | 54 65 | oveq12d |  |-  ( ph -> ( ( # ` ( W prefix E ) ) + ( # ` <" I "> ) ) = ( E + 1 ) ) | 
						
							| 67 | 54 66 | oveq12d |  |-  ( ph -> ( ( # ` ( W prefix E ) ) ..^ ( ( # ` ( W prefix E ) ) + ( # ` <" I "> ) ) ) = ( E ..^ ( E + 1 ) ) ) | 
						
							| 68 | 63 67 | eleqtrrd |  |-  ( ph -> E e. ( ( # ` ( W prefix E ) ) ..^ ( ( # ` ( W prefix E ) ) + ( # ` <" I "> ) ) ) ) | 
						
							| 69 |  | ccatval2 |  |-  ( ( ( W prefix E ) e. Word D /\ <" I "> e. Word D /\ E e. ( ( # ` ( W prefix E ) ) ..^ ( ( # ` ( W prefix E ) ) + ( # ` <" I "> ) ) ) ) -> ( ( ( W prefix E ) ++ <" I "> ) ` E ) = ( <" I "> ` ( E - ( # ` ( W prefix E ) ) ) ) ) | 
						
							| 70 | 25 12 68 69 | syl3anc |  |-  ( ph -> ( ( ( W prefix E ) ++ <" I "> ) ` E ) = ( <" I "> ` ( E - ( # ` ( W prefix E ) ) ) ) ) | 
						
							| 71 | 16 60 70 | 3eqtrd |  |-  ( ph -> ( U ` E ) = ( <" I "> ` ( E - ( # ` ( W prefix E ) ) ) ) ) | 
						
							| 72 | 54 | oveq2d |  |-  ( ph -> ( E - ( # ` ( W prefix E ) ) ) = ( E - E ) ) | 
						
							| 73 | 48 | nn0cnd |  |-  ( ph -> E e. CC ) | 
						
							| 74 | 73 | subidd |  |-  ( ph -> ( E - E ) = 0 ) | 
						
							| 75 | 72 74 | eqtrd |  |-  ( ph -> ( E - ( # ` ( W prefix E ) ) ) = 0 ) | 
						
							| 76 | 75 | fveq2d |  |-  ( ph -> ( <" I "> ` ( E - ( # ` ( W prefix E ) ) ) ) = ( <" I "> ` 0 ) ) | 
						
							| 77 |  | s1fv |  |-  ( I e. ( D \ ran W ) -> ( <" I "> ` 0 ) = I ) | 
						
							| 78 | 5 77 | syl |  |-  ( ph -> ( <" I "> ` 0 ) = I ) | 
						
							| 79 | 71 76 78 | 3eqtrd |  |-  ( ph -> ( U ` E ) = I ) |