Step |
Hyp |
Ref |
Expression |
1 |
|
cycpmco2.c |
|- M = ( toCyc ` D ) |
2 |
|
cycpmco2.s |
|- S = ( SymGrp ` D ) |
3 |
|
cycpmco2.d |
|- ( ph -> D e. V ) |
4 |
|
cycpmco2.w |
|- ( ph -> W e. dom M ) |
5 |
|
cycpmco2.i |
|- ( ph -> I e. ( D \ ran W ) ) |
6 |
|
cycpmco2.j |
|- ( ph -> J e. ran W ) |
7 |
|
cycpmco2.e |
|- E = ( ( `' W ` J ) + 1 ) |
8 |
|
cycpmco2.1 |
|- U = ( W splice <. E , E , <" I "> >. ) |
9 |
|
ovexd |
|- ( ph -> ( ( `' W ` J ) + 1 ) e. _V ) |
10 |
7 9
|
eqeltrid |
|- ( ph -> E e. _V ) |
11 |
5
|
eldifad |
|- ( ph -> I e. D ) |
12 |
11
|
s1cld |
|- ( ph -> <" I "> e. Word D ) |
13 |
|
splval |
|- ( ( W e. dom M /\ ( E e. _V /\ E e. _V /\ <" I "> e. Word D ) ) -> ( W splice <. E , E , <" I "> >. ) = ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) |
14 |
4 10 10 12 13
|
syl13anc |
|- ( ph -> ( W splice <. E , E , <" I "> >. ) = ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) |
15 |
8 14
|
eqtrid |
|- ( ph -> U = ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ) |
16 |
15
|
fveq1d |
|- ( ph -> ( U ` E ) = ( ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ` E ) ) |
17 |
|
ssrab2 |
|- { w e. Word D | w : dom w -1-1-> D } C_ Word D |
18 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
19 |
1 2 18
|
tocycf |
|- ( D e. V -> M : { w e. Word D | w : dom w -1-1-> D } --> ( Base ` S ) ) |
20 |
3 19
|
syl |
|- ( ph -> M : { w e. Word D | w : dom w -1-1-> D } --> ( Base ` S ) ) |
21 |
20
|
fdmd |
|- ( ph -> dom M = { w e. Word D | w : dom w -1-1-> D } ) |
22 |
4 21
|
eleqtrd |
|- ( ph -> W e. { w e. Word D | w : dom w -1-1-> D } ) |
23 |
17 22
|
sselid |
|- ( ph -> W e. Word D ) |
24 |
|
pfxcl |
|- ( W e. Word D -> ( W prefix E ) e. Word D ) |
25 |
23 24
|
syl |
|- ( ph -> ( W prefix E ) e. Word D ) |
26 |
|
ccatcl |
|- ( ( ( W prefix E ) e. Word D /\ <" I "> e. Word D ) -> ( ( W prefix E ) ++ <" I "> ) e. Word D ) |
27 |
25 12 26
|
syl2anc |
|- ( ph -> ( ( W prefix E ) ++ <" I "> ) e. Word D ) |
28 |
|
swrdcl |
|- ( W e. Word D -> ( W substr <. E , ( # ` W ) >. ) e. Word D ) |
29 |
23 28
|
syl |
|- ( ph -> ( W substr <. E , ( # ` W ) >. ) e. Word D ) |
30 |
|
fz0ssnn0 |
|- ( 0 ... ( # ` W ) ) C_ NN0 |
31 |
|
id |
|- ( w = W -> w = W ) |
32 |
|
dmeq |
|- ( w = W -> dom w = dom W ) |
33 |
|
eqidd |
|- ( w = W -> D = D ) |
34 |
31 32 33
|
f1eq123d |
|- ( w = W -> ( w : dom w -1-1-> D <-> W : dom W -1-1-> D ) ) |
35 |
34
|
elrab |
|- ( W e. { w e. Word D | w : dom w -1-1-> D } <-> ( W e. Word D /\ W : dom W -1-1-> D ) ) |
36 |
22 35
|
sylib |
|- ( ph -> ( W e. Word D /\ W : dom W -1-1-> D ) ) |
37 |
36
|
simprd |
|- ( ph -> W : dom W -1-1-> D ) |
38 |
|
f1cnv |
|- ( W : dom W -1-1-> D -> `' W : ran W -1-1-onto-> dom W ) |
39 |
|
f1of |
|- ( `' W : ran W -1-1-onto-> dom W -> `' W : ran W --> dom W ) |
40 |
37 38 39
|
3syl |
|- ( ph -> `' W : ran W --> dom W ) |
41 |
40 6
|
ffvelrnd |
|- ( ph -> ( `' W ` J ) e. dom W ) |
42 |
|
wrddm |
|- ( W e. Word D -> dom W = ( 0 ..^ ( # ` W ) ) ) |
43 |
23 42
|
syl |
|- ( ph -> dom W = ( 0 ..^ ( # ` W ) ) ) |
44 |
41 43
|
eleqtrd |
|- ( ph -> ( `' W ` J ) e. ( 0 ..^ ( # ` W ) ) ) |
45 |
|
fzofzp1 |
|- ( ( `' W ` J ) e. ( 0 ..^ ( # ` W ) ) -> ( ( `' W ` J ) + 1 ) e. ( 0 ... ( # ` W ) ) ) |
46 |
44 45
|
syl |
|- ( ph -> ( ( `' W ` J ) + 1 ) e. ( 0 ... ( # ` W ) ) ) |
47 |
7 46
|
eqeltrid |
|- ( ph -> E e. ( 0 ... ( # ` W ) ) ) |
48 |
30 47
|
sselid |
|- ( ph -> E e. NN0 ) |
49 |
|
fzonn0p1 |
|- ( E e. NN0 -> E e. ( 0 ..^ ( E + 1 ) ) ) |
50 |
48 49
|
syl |
|- ( ph -> E e. ( 0 ..^ ( E + 1 ) ) ) |
51 |
|
ccatws1len |
|- ( ( W prefix E ) e. Word D -> ( # ` ( ( W prefix E ) ++ <" I "> ) ) = ( ( # ` ( W prefix E ) ) + 1 ) ) |
52 |
23 24 51
|
3syl |
|- ( ph -> ( # ` ( ( W prefix E ) ++ <" I "> ) ) = ( ( # ` ( W prefix E ) ) + 1 ) ) |
53 |
|
pfxlen |
|- ( ( W e. Word D /\ E e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( W prefix E ) ) = E ) |
54 |
23 47 53
|
syl2anc |
|- ( ph -> ( # ` ( W prefix E ) ) = E ) |
55 |
54
|
oveq1d |
|- ( ph -> ( ( # ` ( W prefix E ) ) + 1 ) = ( E + 1 ) ) |
56 |
52 55
|
eqtrd |
|- ( ph -> ( # ` ( ( W prefix E ) ++ <" I "> ) ) = ( E + 1 ) ) |
57 |
56
|
oveq2d |
|- ( ph -> ( 0 ..^ ( # ` ( ( W prefix E ) ++ <" I "> ) ) ) = ( 0 ..^ ( E + 1 ) ) ) |
58 |
50 57
|
eleqtrrd |
|- ( ph -> E e. ( 0 ..^ ( # ` ( ( W prefix E ) ++ <" I "> ) ) ) ) |
59 |
|
ccatval1 |
|- ( ( ( ( W prefix E ) ++ <" I "> ) e. Word D /\ ( W substr <. E , ( # ` W ) >. ) e. Word D /\ E e. ( 0 ..^ ( # ` ( ( W prefix E ) ++ <" I "> ) ) ) ) -> ( ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ` E ) = ( ( ( W prefix E ) ++ <" I "> ) ` E ) ) |
60 |
27 29 58 59
|
syl3anc |
|- ( ph -> ( ( ( ( W prefix E ) ++ <" I "> ) ++ ( W substr <. E , ( # ` W ) >. ) ) ` E ) = ( ( ( W prefix E ) ++ <" I "> ) ` E ) ) |
61 |
48
|
nn0zd |
|- ( ph -> E e. ZZ ) |
62 |
|
elfzomin |
|- ( E e. ZZ -> E e. ( E ..^ ( E + 1 ) ) ) |
63 |
61 62
|
syl |
|- ( ph -> E e. ( E ..^ ( E + 1 ) ) ) |
64 |
|
s1len |
|- ( # ` <" I "> ) = 1 |
65 |
64
|
a1i |
|- ( ph -> ( # ` <" I "> ) = 1 ) |
66 |
54 65
|
oveq12d |
|- ( ph -> ( ( # ` ( W prefix E ) ) + ( # ` <" I "> ) ) = ( E + 1 ) ) |
67 |
54 66
|
oveq12d |
|- ( ph -> ( ( # ` ( W prefix E ) ) ..^ ( ( # ` ( W prefix E ) ) + ( # ` <" I "> ) ) ) = ( E ..^ ( E + 1 ) ) ) |
68 |
63 67
|
eleqtrrd |
|- ( ph -> E e. ( ( # ` ( W prefix E ) ) ..^ ( ( # ` ( W prefix E ) ) + ( # ` <" I "> ) ) ) ) |
69 |
|
ccatval2 |
|- ( ( ( W prefix E ) e. Word D /\ <" I "> e. Word D /\ E e. ( ( # ` ( W prefix E ) ) ..^ ( ( # ` ( W prefix E ) ) + ( # ` <" I "> ) ) ) ) -> ( ( ( W prefix E ) ++ <" I "> ) ` E ) = ( <" I "> ` ( E - ( # ` ( W prefix E ) ) ) ) ) |
70 |
25 12 68 69
|
syl3anc |
|- ( ph -> ( ( ( W prefix E ) ++ <" I "> ) ` E ) = ( <" I "> ` ( E - ( # ` ( W prefix E ) ) ) ) ) |
71 |
16 60 70
|
3eqtrd |
|- ( ph -> ( U ` E ) = ( <" I "> ` ( E - ( # ` ( W prefix E ) ) ) ) ) |
72 |
54
|
oveq2d |
|- ( ph -> ( E - ( # ` ( W prefix E ) ) ) = ( E - E ) ) |
73 |
48
|
nn0cnd |
|- ( ph -> E e. CC ) |
74 |
73
|
subidd |
|- ( ph -> ( E - E ) = 0 ) |
75 |
72 74
|
eqtrd |
|- ( ph -> ( E - ( # ` ( W prefix E ) ) ) = 0 ) |
76 |
75
|
fveq2d |
|- ( ph -> ( <" I "> ` ( E - ( # ` ( W prefix E ) ) ) ) = ( <" I "> ` 0 ) ) |
77 |
|
s1fv |
|- ( I e. ( D \ ran W ) -> ( <" I "> ` 0 ) = I ) |
78 |
5 77
|
syl |
|- ( ph -> ( <" I "> ` 0 ) = I ) |
79 |
71 76 78
|
3eqtrd |
|- ( ph -> ( U ` E ) = I ) |