Metamath Proof Explorer


Theorem cycpm2cl

Description: Closure for the 2-cycles. (Contributed by Thierry Arnoux, 24-Sep-2023)

Ref Expression
Hypotheses cycpm2.c 𝐶 = ( toCyc ‘ 𝐷 )
cycpm2.d ( 𝜑𝐷𝑉 )
cycpm2.i ( 𝜑𝐼𝐷 )
cycpm2.j ( 𝜑𝐽𝐷 )
cycpm2.1 ( 𝜑𝐼𝐽 )
cycpm2cl.s 𝑆 = ( SymGrp ‘ 𝐷 )
Assertion cycpm2cl ( 𝜑 → ( 𝐶 ‘ ⟨“ 𝐼 𝐽 ”⟩ ) ∈ ( Base ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 cycpm2.c 𝐶 = ( toCyc ‘ 𝐷 )
2 cycpm2.d ( 𝜑𝐷𝑉 )
3 cycpm2.i ( 𝜑𝐼𝐷 )
4 cycpm2.j ( 𝜑𝐽𝐷 )
5 cycpm2.1 ( 𝜑𝐼𝐽 )
6 cycpm2cl.s 𝑆 = ( SymGrp ‘ 𝐷 )
7 3 4 s2cld ( 𝜑 → ⟨“ 𝐼 𝐽 ”⟩ ∈ Word 𝐷 )
8 3 4 5 s2f1 ( 𝜑 → ⟨“ 𝐼 𝐽 ”⟩ : dom ⟨“ 𝐼 𝐽 ”⟩ –1-1𝐷 )
9 1 2 7 8 6 cycpmcl ( 𝜑 → ( 𝐶 ‘ ⟨“ 𝐼 𝐽 ”⟩ ) ∈ ( Base ‘ 𝑆 ) )