Description: Closure for the 2-cycles. (Contributed by Thierry Arnoux, 24-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cycpm2.c | ⊢ 𝐶 = ( toCyc ‘ 𝐷 ) | |
| cycpm2.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | ||
| cycpm2.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝐷 ) | ||
| cycpm2.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝐷 ) | ||
| cycpm2.1 | ⊢ ( 𝜑 → 𝐼 ≠ 𝐽 ) | ||
| cycpm2cl.s | ⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) | ||
| Assertion | cycpm2cl | ⊢ ( 𝜑 → ( 𝐶 ‘ 〈“ 𝐼 𝐽 ”〉 ) ∈ ( Base ‘ 𝑆 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cycpm2.c | ⊢ 𝐶 = ( toCyc ‘ 𝐷 ) | |
| 2 | cycpm2.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | |
| 3 | cycpm2.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝐷 ) | |
| 4 | cycpm2.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝐷 ) | |
| 5 | cycpm2.1 | ⊢ ( 𝜑 → 𝐼 ≠ 𝐽 ) | |
| 6 | cycpm2cl.s | ⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) | |
| 7 | 3 4 | s2cld | ⊢ ( 𝜑 → 〈“ 𝐼 𝐽 ”〉 ∈ Word 𝐷 ) | 
| 8 | 3 4 5 | s2f1 | ⊢ ( 𝜑 → 〈“ 𝐼 𝐽 ”〉 : dom 〈“ 𝐼 𝐽 ”〉 –1-1→ 𝐷 ) | 
| 9 | 1 2 7 8 6 | cycpmcl | ⊢ ( 𝜑 → ( 𝐶 ‘ 〈“ 𝐼 𝐽 ”〉 ) ∈ ( Base ‘ 𝑆 ) ) |