| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|- ( ( F Fn A /\ B C_ A /\ C C_ A ) -> F Fn A ) |
| 2 |
|
simpl |
|- ( ( B C_ A /\ C C_ A ) -> B C_ A ) |
| 3 |
|
simpr |
|- ( ( B C_ A /\ C C_ A ) -> C C_ A ) |
| 4 |
2 3
|
unssd |
|- ( ( B C_ A /\ C C_ A ) -> ( B u. C ) C_ A ) |
| 5 |
4
|
3adant1 |
|- ( ( F Fn A /\ B C_ A /\ C C_ A ) -> ( B u. C ) C_ A ) |
| 6 |
1 5
|
fvelimabd |
|- ( ( F Fn A /\ B C_ A /\ C C_ A ) -> ( y e. ( F " ( B u. C ) ) <-> E. x e. ( B u. C ) ( F ` x ) = y ) ) |
| 7 |
|
rexun |
|- ( E. x e. ( B u. C ) ( F ` x ) = y <-> ( E. x e. B ( F ` x ) = y \/ E. x e. C ( F ` x ) = y ) ) |
| 8 |
6 7
|
bitrdi |
|- ( ( F Fn A /\ B C_ A /\ C C_ A ) -> ( y e. ( F " ( B u. C ) ) <-> ( E. x e. B ( F ` x ) = y \/ E. x e. C ( F ` x ) = y ) ) ) |
| 9 |
|
fvelimab |
|- ( ( F Fn A /\ B C_ A ) -> ( y e. ( F " B ) <-> E. x e. B ( F ` x ) = y ) ) |
| 10 |
9
|
3adant3 |
|- ( ( F Fn A /\ B C_ A /\ C C_ A ) -> ( y e. ( F " B ) <-> E. x e. B ( F ` x ) = y ) ) |
| 11 |
|
fvelimab |
|- ( ( F Fn A /\ C C_ A ) -> ( y e. ( F " C ) <-> E. x e. C ( F ` x ) = y ) ) |
| 12 |
11
|
3adant2 |
|- ( ( F Fn A /\ B C_ A /\ C C_ A ) -> ( y e. ( F " C ) <-> E. x e. C ( F ` x ) = y ) ) |
| 13 |
10 12
|
orbi12d |
|- ( ( F Fn A /\ B C_ A /\ C C_ A ) -> ( ( y e. ( F " B ) \/ y e. ( F " C ) ) <-> ( E. x e. B ( F ` x ) = y \/ E. x e. C ( F ` x ) = y ) ) ) |
| 14 |
8 13
|
bitr4d |
|- ( ( F Fn A /\ B C_ A /\ C C_ A ) -> ( y e. ( F " ( B u. C ) ) <-> ( y e. ( F " B ) \/ y e. ( F " C ) ) ) ) |
| 15 |
|
elun |
|- ( y e. ( ( F " B ) u. ( F " C ) ) <-> ( y e. ( F " B ) \/ y e. ( F " C ) ) ) |
| 16 |
14 15
|
bitr4di |
|- ( ( F Fn A /\ B C_ A /\ C C_ A ) -> ( y e. ( F " ( B u. C ) ) <-> y e. ( ( F " B ) u. ( F " C ) ) ) ) |
| 17 |
16
|
eqrdv |
|- ( ( F Fn A /\ B C_ A /\ C C_ A ) -> ( F " ( B u. C ) ) = ( ( F " B ) u. ( F " C ) ) ) |