Metamath Proof Explorer


Theorem cycpmco2f1

Description: The word U used in cycpmco2 is injective, so it can represent a cycle and form a cyclic permutation ( MU ) . (Contributed by Thierry Arnoux, 4-Jan-2024)

Ref Expression
Hypotheses cycpmco2.c M = toCyc D
cycpmco2.s S = SymGrp D
cycpmco2.d φ D V
cycpmco2.w φ W dom M
cycpmco2.i φ I D ran W
cycpmco2.j φ J ran W
cycpmco2.e E = W -1 J + 1
cycpmco2.1 U = W splice E E ⟨“ I ”⟩
Assertion cycpmco2f1 φ U : dom U 1-1 D

Proof

Step Hyp Ref Expression
1 cycpmco2.c M = toCyc D
2 cycpmco2.s S = SymGrp D
3 cycpmco2.d φ D V
4 cycpmco2.w φ W dom M
5 cycpmco2.i φ I D ran W
6 cycpmco2.j φ J ran W
7 cycpmco2.e E = W -1 J + 1
8 cycpmco2.1 U = W splice E E ⟨“ I ”⟩
9 ssrab2 w Word D | w : dom w 1-1 D Word D
10 eqid Base S = Base S
11 1 2 10 tocycf D V M : w Word D | w : dom w 1-1 D Base S
12 3 11 syl φ M : w Word D | w : dom w 1-1 D Base S
13 12 fdmd φ dom M = w Word D | w : dom w 1-1 D
14 4 13 eleqtrd φ W w Word D | w : dom w 1-1 D
15 9 14 sselid φ W Word D
16 pfxcl W Word D W prefix E Word D
17 15 16 syl φ W prefix E Word D
18 5 eldifad φ I D
19 18 s1cld φ ⟨“ I ”⟩ Word D
20 ccatcl W prefix E Word D ⟨“ I ”⟩ Word D W prefix E ++ ⟨“ I ”⟩ Word D
21 17 19 20 syl2anc φ W prefix E ++ ⟨“ I ”⟩ Word D
22 swrdcl W Word D W substr E W Word D
23 15 22 syl φ W substr E W Word D
24 id w = W w = W
25 dmeq w = W dom w = dom W
26 eqidd w = W D = D
27 24 25 26 f1eq123d w = W w : dom w 1-1 D W : dom W 1-1 D
28 27 elrab W w Word D | w : dom w 1-1 D W Word D W : dom W 1-1 D
29 14 28 sylib φ W Word D W : dom W 1-1 D
30 29 simprd φ W : dom W 1-1 D
31 f1cnv W : dom W 1-1 D W -1 : ran W 1-1 onto dom W
32 f1of W -1 : ran W 1-1 onto dom W W -1 : ran W dom W
33 30 31 32 3syl φ W -1 : ran W dom W
34 33 6 ffvelrnd φ W -1 J dom W
35 wrddm W Word D dom W = 0 ..^ W
36 15 35 syl φ dom W = 0 ..^ W
37 34 36 eleqtrd φ W -1 J 0 ..^ W
38 fzofzp1 W -1 J 0 ..^ W W -1 J + 1 0 W
39 37 38 syl φ W -1 J + 1 0 W
40 7 39 eqeltrid φ E 0 W
41 15 30 40 pfxf1 φ W prefix E : dom W prefix E 1-1 D
42 18 s1f1 φ ⟨“ I ”⟩ : dom ⟨“ I ”⟩ 1-1 D
43 s1rn I D ran ⟨“ I ”⟩ = I
44 18 43 syl φ ran ⟨“ I ”⟩ = I
45 44 ineq2d φ ran W prefix E ran ⟨“ I ”⟩ = ran W prefix E I
46 pfxrn2 W Word D E 0 W ran W prefix E ran W
47 15 40 46 syl2anc φ ran W prefix E ran W
48 47 ssrind φ ran W prefix E I ran W I
49 5 eldifbd φ ¬ I ran W
50 disjsn ran W I = ¬ I ran W
51 49 50 sylibr φ ran W I =
52 48 51 sseqtrd φ ran W prefix E I
53 ss0 ran W prefix E I ran W prefix E I =
54 52 53 syl φ ran W prefix E I =
55 45 54 eqtrd φ ran W prefix E ran ⟨“ I ”⟩ =
56 3 17 19 41 42 55 ccatf1 φ W prefix E ++ ⟨“ I ”⟩ : dom W prefix E ++ ⟨“ I ”⟩ 1-1 D
57 lencl W Word D W 0
58 nn0fz0 W 0 W 0 W
59 58 biimpi W 0 W 0 W
60 15 57 59 3syl φ W 0 W
61 15 40 60 30 swrdf1 φ W substr E W : dom W substr E W 1-1 D
62 ccatrn W prefix E Word D ⟨“ I ”⟩ Word D ran W prefix E ++ ⟨“ I ”⟩ = ran W prefix E ran ⟨“ I ”⟩
63 17 19 62 syl2anc φ ran W prefix E ++ ⟨“ I ”⟩ = ran W prefix E ran ⟨“ I ”⟩
64 63 ineq1d φ ran W prefix E ++ ⟨“ I ”⟩ ran W substr E W = ran W prefix E ran ⟨“ I ”⟩ ran W substr E W
65 indir ran W prefix E ran ⟨“ I ”⟩ ran W substr E W = ran W prefix E ran W substr E W ran ⟨“ I ”⟩ ran W substr E W
66 64 65 eqtrdi φ ran W prefix E ++ ⟨“ I ”⟩ ran W substr E W = ran W prefix E ran W substr E W ran ⟨“ I ”⟩ ran W substr E W
67 fz0ssnn0 0 W 0
68 67 40 sselid φ E 0
69 pfxval W Word D E 0 W prefix E = W substr 0 E
70 15 68 69 syl2anc φ W prefix E = W substr 0 E
71 70 rneqd φ ran W prefix E = ran W substr 0 E
72 71 ineq1d φ ran W prefix E ran W substr E W = ran W substr 0 E ran W substr E W
73 0elfz E 0 0 0 E
74 68 73 syl φ 0 0 E
75 elfzuz3 E 0 W W E
76 eluzfz1 W E E E W
77 40 75 76 3syl φ E E W
78 eluzfz2 W E W E W
79 40 75 78 3syl φ W E W
80 15 74 40 30 77 79 swrdrndisj φ ran W substr 0 E ran W substr E W =
81 72 80 eqtrd φ ran W prefix E ran W substr E W =
82 incom ran ⟨“ I ”⟩ ran W substr E W = ran W substr E W ran ⟨“ I ”⟩
83 44 ineq2d φ ran W substr E W ran ⟨“ I ”⟩ = ran W substr E W I
84 swrdrn2 W Word D E 0 W W 0 W ran W substr E W ran W
85 15 40 60 84 syl3anc φ ran W substr E W ran W
86 85 ssrind φ ran W substr E W I ran W I
87 86 51 sseqtrd φ ran W substr E W I
88 ss0 ran W substr E W I ran W substr E W I =
89 87 88 syl φ ran W substr E W I =
90 83 89 eqtrd φ ran W substr E W ran ⟨“ I ”⟩ =
91 82 90 eqtrid φ ran ⟨“ I ”⟩ ran W substr E W =
92 81 91 uneq12d φ ran W prefix E ran W substr E W ran ⟨“ I ”⟩ ran W substr E W =
93 unidm =
94 93 a1i φ =
95 66 92 94 3eqtrd φ ran W prefix E ++ ⟨“ I ”⟩ ran W substr E W =
96 3 21 23 56 61 95 ccatf1 φ W prefix E ++ ⟨“ I ”⟩ ++ W substr E W : dom W prefix E ++ ⟨“ I ”⟩ ++ W substr E W 1-1 D
97 ovexd φ W -1 J + 1 V
98 7 97 eqeltrid φ E V
99 splval W dom M E V E V ⟨“ I ”⟩ Word D W splice E E ⟨“ I ”⟩ = W prefix E ++ ⟨“ I ”⟩ ++ W substr E W
100 4 98 98 19 99 syl13anc φ W splice E E ⟨“ I ”⟩ = W prefix E ++ ⟨“ I ”⟩ ++ W substr E W
101 8 100 eqtrid φ U = W prefix E ++ ⟨“ I ”⟩ ++ W substr E W
102 101 dmeqd φ dom U = dom W prefix E ++ ⟨“ I ”⟩ ++ W substr E W
103 eqidd φ D = D
104 101 102 103 f1eq123d φ U : dom U 1-1 D W prefix E ++ ⟨“ I ”⟩ ++ W substr E W : dom W prefix E ++ ⟨“ I ”⟩ ++ W substr E W 1-1 D
105 96 104 mpbird φ U : dom U 1-1 D