Metamath Proof Explorer


Theorem swrdrn2

Description: The range of a subword is a subset of the range of that word. Stronger version of swrdrn . (Contributed by Thierry Arnoux, 12-Dec-2023)

Ref Expression
Assertion swrdrn2 WWordVM0NN0WranWsubstrMNranW

Proof

Step Hyp Ref Expression
1 swrdval2 WWordVM0NN0WWsubstrMN=x0..^NMWx+M
2 1 rneqd WWordVM0NN0WranWsubstrMN=ranx0..^NMWx+M
3 eqidd WWordVM0NN0Wx0..^NMW=W
4 simpl1 WWordVM0NN0Wx0..^NMWWordV
5 3 4 wrdfd WWordVM0NN0Wx0..^NMW:0..^WV
6 5 ffund WWordVM0NN0Wx0..^NMFunW
7 elfzuz3 N0WWN
8 7 3ad2ant3 WWordVM0NN0WWN
9 8 adantr WWordVM0NN0Wx0..^NMWN
10 fzoss2 WN0..^N0..^W
11 9 10 syl WWordVM0NN0Wx0..^NM0..^N0..^W
12 elfzuz M0NM0
13 12 3ad2ant2 WWordVM0NN0WM0
14 13 adantr WWordVM0NN0Wx0..^NMM0
15 fzoss1 M0M..^N0..^N
16 14 15 syl WWordVM0NN0Wx0..^NMM..^N0..^N
17 simpr WWordVM0NN0Wx0..^NMx0..^NM
18 simpl3 WWordVM0NN0Wx0..^NMN0W
19 18 elfzelzd WWordVM0NN0Wx0..^NMN
20 simpl2 WWordVM0NN0Wx0..^NMM0N
21 20 elfzelzd WWordVM0NN0Wx0..^NMM
22 fzoaddel2 x0..^NMNMx+MM..^N
23 17 19 21 22 syl3anc WWordVM0NN0Wx0..^NMx+MM..^N
24 16 23 sseldd WWordVM0NN0Wx0..^NMx+M0..^N
25 11 24 sseldd WWordVM0NN0Wx0..^NMx+M0..^W
26 wrddm WWordVdomW=0..^W
27 26 3ad2ant1 WWordVM0NN0WdomW=0..^W
28 27 adantr WWordVM0NN0Wx0..^NMdomW=0..^W
29 25 28 eleqtrrd WWordVM0NN0Wx0..^NMx+MdomW
30 fvelrn FunWx+MdomWWx+MranW
31 6 29 30 syl2anc WWordVM0NN0Wx0..^NMWx+MranW
32 31 ralrimiva WWordVM0NN0Wx0..^NMWx+MranW
33 eqid x0..^NMWx+M=x0..^NMWx+M
34 33 rnmptss x0..^NMWx+MranWranx0..^NMWx+MranW
35 32 34 syl WWordVM0NN0Wranx0..^NMWx+MranW
36 2 35 eqsstrd WWordVM0NN0WranWsubstrMNranW