| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swrdval2 |
|
| 2 |
1
|
rneqd |
|
| 3 |
|
eqidd |
|
| 4 |
|
simpl1 |
|
| 5 |
3 4
|
wrdfd |
|
| 6 |
5
|
ffund |
|
| 7 |
|
elfzuz3 |
|
| 8 |
7
|
3ad2ant3 |
|
| 9 |
8
|
adantr |
|
| 10 |
|
fzoss2 |
|
| 11 |
9 10
|
syl |
|
| 12 |
|
elfzuz |
|
| 13 |
12
|
3ad2ant2 |
|
| 14 |
13
|
adantr |
|
| 15 |
|
fzoss1 |
|
| 16 |
14 15
|
syl |
|
| 17 |
|
simpr |
|
| 18 |
|
simpl3 |
|
| 19 |
18
|
elfzelzd |
|
| 20 |
|
simpl2 |
|
| 21 |
20
|
elfzelzd |
|
| 22 |
|
fzoaddel2 |
|
| 23 |
17 19 21 22
|
syl3anc |
|
| 24 |
16 23
|
sseldd |
|
| 25 |
11 24
|
sseldd |
|
| 26 |
|
wrddm |
|
| 27 |
26
|
3ad2ant1 |
|
| 28 |
27
|
adantr |
|
| 29 |
25 28
|
eleqtrrd |
|
| 30 |
|
fvelrn |
|
| 31 |
6 29 30
|
syl2anc |
|
| 32 |
31
|
ralrimiva |
|
| 33 |
|
eqid |
|
| 34 |
33
|
rnmptss |
|
| 35 |
32 34
|
syl |
|
| 36 |
2 35
|
eqsstrd |
|