| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swrdf1.w |
|
| 2 |
|
swrdf1.m |
|
| 3 |
|
swrdf1.n |
|
| 4 |
|
swrdf1.1 |
|
| 5 |
|
swrdf |
|
| 6 |
1 2 3 5
|
syl3anc |
|
| 7 |
6
|
ffdmd |
|
| 8 |
|
fzossz |
|
| 9 |
|
simpllr |
|
| 10 |
6
|
fdmd |
|
| 11 |
10
|
ad3antrrr |
|
| 12 |
9 11
|
eleqtrd |
|
| 13 |
8 12
|
sselid |
|
| 14 |
13
|
zcnd |
|
| 15 |
|
simplr |
|
| 16 |
15 11
|
eleqtrd |
|
| 17 |
8 16
|
sselid |
|
| 18 |
17
|
zcnd |
|
| 19 |
2
|
elfzelzd |
|
| 20 |
19
|
ad3antrrr |
|
| 21 |
20
|
zcnd |
|
| 22 |
4
|
ad3antrrr |
|
| 23 |
|
elfzuz |
|
| 24 |
|
fzoss1 |
|
| 25 |
2 23 24
|
3syl |
|
| 26 |
|
elfzuz3 |
|
| 27 |
|
fzoss2 |
|
| 28 |
3 26 27
|
3syl |
|
| 29 |
25 28
|
sstrd |
|
| 30 |
29
|
ad3antrrr |
|
| 31 |
3
|
elfzelzd |
|
| 32 |
31
|
ad3antrrr |
|
| 33 |
|
fzoaddel2 |
|
| 34 |
12 32 20 33
|
syl3anc |
|
| 35 |
30 34
|
sseldd |
|
| 36 |
|
wrddm |
|
| 37 |
1 36
|
syl |
|
| 38 |
37
|
ad3antrrr |
|
| 39 |
35 38
|
eleqtrrd |
|
| 40 |
|
fzoaddel2 |
|
| 41 |
16 32 20 40
|
syl3anc |
|
| 42 |
30 41
|
sseldd |
|
| 43 |
42 38
|
eleqtrrd |
|
| 44 |
|
simpr |
|
| 45 |
1
|
ad3antrrr |
|
| 46 |
2
|
ad3antrrr |
|
| 47 |
3
|
ad3antrrr |
|
| 48 |
|
swrdfv |
|
| 49 |
45 46 47 12 48
|
syl31anc |
|
| 50 |
|
swrdfv |
|
| 51 |
45 46 47 16 50
|
syl31anc |
|
| 52 |
44 49 51
|
3eqtr3d |
|
| 53 |
|
f1veqaeq |
|
| 54 |
53
|
anassrs |
|
| 55 |
54
|
imp |
|
| 56 |
22 39 43 52 55
|
syl1111anc |
|
| 57 |
14 18 21 56
|
addcan2ad |
|
| 58 |
57
|
ex |
|
| 59 |
58
|
anasss |
|
| 60 |
59
|
ralrimivva |
|
| 61 |
|
dff13 |
|
| 62 |
7 60 61
|
sylanbrc |
|