Metamath Proof Explorer


Theorem swrdrndisj

Description: Condition for the range of two subwords of an injective word to be disjoint. (Contributed by Thierry Arnoux, 13-Dec-2023)

Ref Expression
Hypotheses swrdf1.w φWWordD
swrdf1.m φM0N
swrdf1.n φN0W
swrdf1.1 φW:domW1-1D
swrdrndisj.1 φONP
swrdrndisj.2 φPNW
Assertion swrdrndisj φranWsubstrMNranWsubstrOP=

Proof

Step Hyp Ref Expression
1 swrdf1.w φWWordD
2 swrdf1.m φM0N
3 swrdf1.n φN0W
4 swrdf1.1 φW:domW1-1D
5 swrdrndisj.1 φONP
6 swrdrndisj.2 φPNW
7 swrdrn3 WWordDM0NN0WranWsubstrMN=WM..^N
8 1 2 3 7 syl3anc φranWsubstrMN=WM..^N
9 elfzuz N0WN0
10 fzss1 N0NP0P
11 3 9 10 3syl φNP0P
12 11 5 sseldd φO0P
13 fzss1 N0NW0W
14 3 9 13 3syl φNW0W
15 14 6 sseldd φP0W
16 swrdrn3 WWordDO0PP0WranWsubstrOP=WO..^P
17 1 12 15 16 syl3anc φranWsubstrOP=WO..^P
18 8 17 ineq12d φranWsubstrMNranWsubstrOP=WM..^NWO..^P
19 df-f1 W:domW1-1DW:domWDFunW-1
20 19 simprbi W:domW1-1DFunW-1
21 imain FunW-1WM..^NO..^P=WM..^NWO..^P
22 4 20 21 3syl φWM..^NO..^P=WM..^NWO..^P
23 elfzuz ONPON
24 fzoss1 ONO..^PN..^P
25 5 23 24 3syl φO..^PN..^P
26 elfzuz3 PNWWP
27 fzoss2 WPN..^PN..^W
28 6 26 27 3syl φN..^PN..^W
29 25 28 sstrd φO..^PN..^W
30 sslin O..^PN..^WM..^NO..^PM..^NN..^W
31 29 30 syl φM..^NO..^PM..^NN..^W
32 fzodisj M..^NN..^W=
33 31 32 sseqtrdi φM..^NO..^P
34 ss0 M..^NO..^PM..^NO..^P=
35 33 34 syl φM..^NO..^P=
36 35 imaeq2d φWM..^NO..^P=W
37 ima0 W=
38 36 37 eqtrdi φWM..^NO..^P=
39 18 22 38 3eqtr2d φranWsubstrMNranWsubstrOP=