| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swrdf1.w |
⊢ ( 𝜑 → 𝑊 ∈ Word 𝐷 ) |
| 2 |
|
swrdf1.m |
⊢ ( 𝜑 → 𝑀 ∈ ( 0 ... 𝑁 ) ) |
| 3 |
|
swrdf1.n |
⊢ ( 𝜑 → 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 4 |
|
swrdf1.1 |
⊢ ( 𝜑 → 𝑊 : dom 𝑊 –1-1→ 𝐷 ) |
| 5 |
|
swrdrndisj.1 |
⊢ ( 𝜑 → 𝑂 ∈ ( 𝑁 ... 𝑃 ) ) |
| 6 |
|
swrdrndisj.2 |
⊢ ( 𝜑 → 𝑃 ∈ ( 𝑁 ... ( ♯ ‘ 𝑊 ) ) ) |
| 7 |
|
swrdrn3 |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ran ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) = ( 𝑊 “ ( 𝑀 ..^ 𝑁 ) ) ) |
| 8 |
1 2 3 7
|
syl3anc |
⊢ ( 𝜑 → ran ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) = ( 𝑊 “ ( 𝑀 ..^ 𝑁 ) ) ) |
| 9 |
|
elfzuz |
⊢ ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 10 |
|
fzss1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → ( 𝑁 ... 𝑃 ) ⊆ ( 0 ... 𝑃 ) ) |
| 11 |
3 9 10
|
3syl |
⊢ ( 𝜑 → ( 𝑁 ... 𝑃 ) ⊆ ( 0 ... 𝑃 ) ) |
| 12 |
11 5
|
sseldd |
⊢ ( 𝜑 → 𝑂 ∈ ( 0 ... 𝑃 ) ) |
| 13 |
|
fzss1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → ( 𝑁 ... ( ♯ ‘ 𝑊 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 14 |
3 9 13
|
3syl |
⊢ ( 𝜑 → ( 𝑁 ... ( ♯ ‘ 𝑊 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 15 |
14 6
|
sseldd |
⊢ ( 𝜑 → 𝑃 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 16 |
|
swrdrn3 |
⊢ ( ( 𝑊 ∈ Word 𝐷 ∧ 𝑂 ∈ ( 0 ... 𝑃 ) ∧ 𝑃 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ran ( 𝑊 substr 〈 𝑂 , 𝑃 〉 ) = ( 𝑊 “ ( 𝑂 ..^ 𝑃 ) ) ) |
| 17 |
1 12 15 16
|
syl3anc |
⊢ ( 𝜑 → ran ( 𝑊 substr 〈 𝑂 , 𝑃 〉 ) = ( 𝑊 “ ( 𝑂 ..^ 𝑃 ) ) ) |
| 18 |
8 17
|
ineq12d |
⊢ ( 𝜑 → ( ran ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ∩ ran ( 𝑊 substr 〈 𝑂 , 𝑃 〉 ) ) = ( ( 𝑊 “ ( 𝑀 ..^ 𝑁 ) ) ∩ ( 𝑊 “ ( 𝑂 ..^ 𝑃 ) ) ) ) |
| 19 |
|
df-f1 |
⊢ ( 𝑊 : dom 𝑊 –1-1→ 𝐷 ↔ ( 𝑊 : dom 𝑊 ⟶ 𝐷 ∧ Fun ◡ 𝑊 ) ) |
| 20 |
19
|
simprbi |
⊢ ( 𝑊 : dom 𝑊 –1-1→ 𝐷 → Fun ◡ 𝑊 ) |
| 21 |
|
imain |
⊢ ( Fun ◡ 𝑊 → ( 𝑊 “ ( ( 𝑀 ..^ 𝑁 ) ∩ ( 𝑂 ..^ 𝑃 ) ) ) = ( ( 𝑊 “ ( 𝑀 ..^ 𝑁 ) ) ∩ ( 𝑊 “ ( 𝑂 ..^ 𝑃 ) ) ) ) |
| 22 |
4 20 21
|
3syl |
⊢ ( 𝜑 → ( 𝑊 “ ( ( 𝑀 ..^ 𝑁 ) ∩ ( 𝑂 ..^ 𝑃 ) ) ) = ( ( 𝑊 “ ( 𝑀 ..^ 𝑁 ) ) ∩ ( 𝑊 “ ( 𝑂 ..^ 𝑃 ) ) ) ) |
| 23 |
|
elfzuz |
⊢ ( 𝑂 ∈ ( 𝑁 ... 𝑃 ) → 𝑂 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 24 |
|
fzoss1 |
⊢ ( 𝑂 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝑂 ..^ 𝑃 ) ⊆ ( 𝑁 ..^ 𝑃 ) ) |
| 25 |
5 23 24
|
3syl |
⊢ ( 𝜑 → ( 𝑂 ..^ 𝑃 ) ⊆ ( 𝑁 ..^ 𝑃 ) ) |
| 26 |
|
elfzuz3 |
⊢ ( 𝑃 ∈ ( 𝑁 ... ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ( ℤ≥ ‘ 𝑃 ) ) |
| 27 |
|
fzoss2 |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ( ℤ≥ ‘ 𝑃 ) → ( 𝑁 ..^ 𝑃 ) ⊆ ( 𝑁 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 28 |
6 26 27
|
3syl |
⊢ ( 𝜑 → ( 𝑁 ..^ 𝑃 ) ⊆ ( 𝑁 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 29 |
25 28
|
sstrd |
⊢ ( 𝜑 → ( 𝑂 ..^ 𝑃 ) ⊆ ( 𝑁 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 30 |
|
sslin |
⊢ ( ( 𝑂 ..^ 𝑃 ) ⊆ ( 𝑁 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 𝑀 ..^ 𝑁 ) ∩ ( 𝑂 ..^ 𝑃 ) ) ⊆ ( ( 𝑀 ..^ 𝑁 ) ∩ ( 𝑁 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 31 |
29 30
|
syl |
⊢ ( 𝜑 → ( ( 𝑀 ..^ 𝑁 ) ∩ ( 𝑂 ..^ 𝑃 ) ) ⊆ ( ( 𝑀 ..^ 𝑁 ) ∩ ( 𝑁 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 32 |
|
fzodisj |
⊢ ( ( 𝑀 ..^ 𝑁 ) ∩ ( 𝑁 ..^ ( ♯ ‘ 𝑊 ) ) ) = ∅ |
| 33 |
31 32
|
sseqtrdi |
⊢ ( 𝜑 → ( ( 𝑀 ..^ 𝑁 ) ∩ ( 𝑂 ..^ 𝑃 ) ) ⊆ ∅ ) |
| 34 |
|
ss0 |
⊢ ( ( ( 𝑀 ..^ 𝑁 ) ∩ ( 𝑂 ..^ 𝑃 ) ) ⊆ ∅ → ( ( 𝑀 ..^ 𝑁 ) ∩ ( 𝑂 ..^ 𝑃 ) ) = ∅ ) |
| 35 |
33 34
|
syl |
⊢ ( 𝜑 → ( ( 𝑀 ..^ 𝑁 ) ∩ ( 𝑂 ..^ 𝑃 ) ) = ∅ ) |
| 36 |
35
|
imaeq2d |
⊢ ( 𝜑 → ( 𝑊 “ ( ( 𝑀 ..^ 𝑁 ) ∩ ( 𝑂 ..^ 𝑃 ) ) ) = ( 𝑊 “ ∅ ) ) |
| 37 |
|
ima0 |
⊢ ( 𝑊 “ ∅ ) = ∅ |
| 38 |
36 37
|
eqtrdi |
⊢ ( 𝜑 → ( 𝑊 “ ( ( 𝑀 ..^ 𝑁 ) ∩ ( 𝑂 ..^ 𝑃 ) ) ) = ∅ ) |
| 39 |
18 22 38
|
3eqtr2d |
⊢ ( 𝜑 → ( ran ( 𝑊 substr 〈 𝑀 , 𝑁 〉 ) ∩ ran ( 𝑊 substr 〈 𝑂 , 𝑃 〉 ) ) = ∅ ) |