Metamath Proof Explorer


Theorem cycpmcl

Description: Cyclic permutations are permutations. (Contributed by Thierry Arnoux, 24-Sep-2023)

Ref Expression
Hypotheses tocycval.1 C = toCyc D
tocycfv.d φ D V
tocycfv.w φ W Word D
tocycfv.1 φ W : dom W 1-1 D
cycpmcl.s S = SymGrp D
Assertion cycpmcl φ C W Base S

Proof

Step Hyp Ref Expression
1 tocycval.1 C = toCyc D
2 tocycfv.d φ D V
3 tocycfv.w φ W Word D
4 tocycfv.1 φ W : dom W 1-1 D
5 cycpmcl.s S = SymGrp D
6 f1oi I D ran W : D ran W 1-1 onto D ran W
7 6 a1i φ I D ran W : D ran W 1-1 onto D ran W
8 1zzd φ 1
9 cshwf W Word D 1 W cyclShift 1 : 0 ..^ W D
10 3 8 9 syl2anc φ W cyclShift 1 : 0 ..^ W D
11 10 ffnd φ W cyclShift 1 Fn 0 ..^ W
12 df-f1 W : dom W 1-1 D W : dom W D Fun W -1
13 4 12 sylib φ W : dom W D Fun W -1
14 13 simprd φ Fun W -1
15 eqid W cyclShift 1 = W cyclShift 1
16 cshinj W Word D Fun W -1 1 W cyclShift 1 = W cyclShift 1 Fun W cyclShift 1 -1
17 15 16 mpi W Word D Fun W -1 1 Fun W cyclShift 1 -1
18 3 14 8 17 syl3anc φ Fun W cyclShift 1 -1
19 f1orn W cyclShift 1 : 0 ..^ W 1-1 onto ran W cyclShift 1 W cyclShift 1 Fn 0 ..^ W Fun W cyclShift 1 -1
20 11 18 19 sylanbrc φ W cyclShift 1 : 0 ..^ W 1-1 onto ran W cyclShift 1
21 eqidd φ W cyclShift 1 = W cyclShift 1
22 wrdf W Word D W : 0 ..^ W D
23 3 22 syl φ W : 0 ..^ W D
24 23 fdmd φ dom W = 0 ..^ W
25 cshwrnid W Word D 1 ran W cyclShift 1 = ran W
26 3 8 25 syl2anc φ ran W cyclShift 1 = ran W
27 26 eqcomd φ ran W = ran W cyclShift 1
28 21 24 27 f1oeq123d φ W cyclShift 1 : dom W 1-1 onto ran W W cyclShift 1 : 0 ..^ W 1-1 onto ran W cyclShift 1
29 20 28 mpbird φ W cyclShift 1 : dom W 1-1 onto ran W
30 f1f1orn W : dom W 1-1 D W : dom W 1-1 onto ran W
31 f1ocnv W : dom W 1-1 onto ran W W -1 : ran W 1-1 onto dom W
32 4 30 31 3syl φ W -1 : ran W 1-1 onto dom W
33 f1oco W cyclShift 1 : dom W 1-1 onto ran W W -1 : ran W 1-1 onto dom W W cyclShift 1 W -1 : ran W 1-1 onto ran W
34 29 32 33 syl2anc φ W cyclShift 1 W -1 : ran W 1-1 onto ran W
35 disjdifr D ran W ran W =
36 35 a1i φ D ran W ran W =
37 f1oun I D ran W : D ran W 1-1 onto D ran W W cyclShift 1 W -1 : ran W 1-1 onto ran W D ran W ran W = D ran W ran W = I D ran W W cyclShift 1 W -1 : D ran W ran W 1-1 onto D ran W ran W
38 7 34 36 36 37 syl22anc φ I D ran W W cyclShift 1 W -1 : D ran W ran W 1-1 onto D ran W ran W
39 1 2 3 4 tocycfv φ C W = I D ran W W cyclShift 1 W -1
40 23 frnd φ ran W D
41 undif ran W D ran W D ran W = D
42 40 41 sylib φ ran W D ran W = D
43 uncom ran W D ran W = D ran W ran W
44 42 43 eqtr3di φ D = D ran W ran W
45 39 44 44 f1oeq123d φ C W : D 1-1 onto D I D ran W W cyclShift 1 W -1 : D ran W ran W 1-1 onto D ran W ran W
46 38 45 mpbird φ C W : D 1-1 onto D
47 fvex C W V
48 eqid Base S = Base S
49 5 48 elsymgbas2 C W V C W Base S C W : D 1-1 onto D
50 47 49 ax-mp C W Base S C W : D 1-1 onto D
51 46 50 sylibr φ C W Base S