Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Relations and Functions
Explicit Functions with one or two points as a domain
cnvprop
Next ⟩
brprop
Metamath Proof Explorer
Ascii
Unicode
Theorem
cnvprop
Description:
Converse of a pair of ordered pairs.
(Contributed by
Thierry Arnoux
, 24-Sep-2023)
Ref
Expression
Assertion
cnvprop
⊢
A
∈
V
∧
B
∈
W
∧
C
∈
V
∧
D
∈
W
→
A
B
C
D
-1
=
B
A
D
C
Proof
Step
Hyp
Ref
Expression
1
cnvsng
⊢
A
∈
V
∧
B
∈
W
→
A
B
-1
=
B
A
2
1
adantr
⊢
A
∈
V
∧
B
∈
W
∧
C
∈
V
∧
D
∈
W
→
A
B
-1
=
B
A
3
cnvsng
⊢
C
∈
V
∧
D
∈
W
→
C
D
-1
=
D
C
4
3
adantl
⊢
A
∈
V
∧
B
∈
W
∧
C
∈
V
∧
D
∈
W
→
C
D
-1
=
D
C
5
2
4
uneq12d
⊢
A
∈
V
∧
B
∈
W
∧
C
∈
V
∧
D
∈
W
→
A
B
-1
∪
C
D
-1
=
B
A
∪
D
C
6
df-pr
⊢
A
B
C
D
=
A
B
∪
C
D
7
6
cnveqi
⊢
A
B
C
D
-1
=
A
B
∪
C
D
-1
8
cnvun
⊢
A
B
∪
C
D
-1
=
A
B
-1
∪
C
D
-1
9
7
8
eqtri
⊢
A
B
C
D
-1
=
A
B
-1
∪
C
D
-1
10
df-pr
⊢
B
A
D
C
=
B
A
∪
D
C
11
5
9
10
3eqtr4g
⊢
A
∈
V
∧
B
∈
W
∧
C
∈
V
∧
D
∈
W
→
A
B
C
D
-1
=
B
A
D
C