Metamath Proof Explorer


Theorem cnvprop

Description: Converse of a pair of ordered pairs. (Contributed by Thierry Arnoux, 24-Sep-2023)

Ref Expression
Assertion cnvprop A V B W C V D W A B C D -1 = B A D C

Proof

Step Hyp Ref Expression
1 cnvsng A V B W A B -1 = B A
2 1 adantr A V B W C V D W A B -1 = B A
3 cnvsng C V D W C D -1 = D C
4 3 adantl A V B W C V D W C D -1 = D C
5 2 4 uneq12d A V B W C V D W A B -1 C D -1 = B A D C
6 df-pr A B C D = A B C D
7 6 cnveqi A B C D -1 = A B C D -1
8 cnvun A B C D -1 = A B -1 C D -1
9 7 8 eqtri A B C D -1 = A B -1 C D -1
10 df-pr B A D C = B A D C
11 5 9 10 3eqtr4g A V B W C V D W A B C D -1 = B A D C