Metamath Proof Explorer


Theorem cnvprop

Description: Converse of a pair of ordered pairs. (Contributed by Thierry Arnoux, 24-Sep-2023)

Ref Expression
Assertion cnvprop ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ ( 𝐶𝑉𝐷𝑊 ) ) → { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ } = { ⟨ 𝐵 , 𝐴 ⟩ , ⟨ 𝐷 , 𝐶 ⟩ } )

Proof

Step Hyp Ref Expression
1 cnvsng ( ( 𝐴𝑉𝐵𝑊 ) → { ⟨ 𝐴 , 𝐵 ⟩ } = { ⟨ 𝐵 , 𝐴 ⟩ } )
2 1 adantr ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ ( 𝐶𝑉𝐷𝑊 ) ) → { ⟨ 𝐴 , 𝐵 ⟩ } = { ⟨ 𝐵 , 𝐴 ⟩ } )
3 cnvsng ( ( 𝐶𝑉𝐷𝑊 ) → { ⟨ 𝐶 , 𝐷 ⟩ } = { ⟨ 𝐷 , 𝐶 ⟩ } )
4 3 adantl ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ ( 𝐶𝑉𝐷𝑊 ) ) → { ⟨ 𝐶 , 𝐷 ⟩ } = { ⟨ 𝐷 , 𝐶 ⟩ } )
5 2 4 uneq12d ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ ( 𝐶𝑉𝐷𝑊 ) ) → ( { ⟨ 𝐴 , 𝐵 ⟩ } ∪ { ⟨ 𝐶 , 𝐷 ⟩ } ) = ( { ⟨ 𝐵 , 𝐴 ⟩ } ∪ { ⟨ 𝐷 , 𝐶 ⟩ } ) )
6 df-pr { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ } = ( { ⟨ 𝐴 , 𝐵 ⟩ } ∪ { ⟨ 𝐶 , 𝐷 ⟩ } )
7 6 cnveqi { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ } = ( { ⟨ 𝐴 , 𝐵 ⟩ } ∪ { ⟨ 𝐶 , 𝐷 ⟩ } )
8 cnvun ( { ⟨ 𝐴 , 𝐵 ⟩ } ∪ { ⟨ 𝐶 , 𝐷 ⟩ } ) = ( { ⟨ 𝐴 , 𝐵 ⟩ } ∪ { ⟨ 𝐶 , 𝐷 ⟩ } )
9 7 8 eqtri { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ } = ( { ⟨ 𝐴 , 𝐵 ⟩ } ∪ { ⟨ 𝐶 , 𝐷 ⟩ } )
10 df-pr { ⟨ 𝐵 , 𝐴 ⟩ , ⟨ 𝐷 , 𝐶 ⟩ } = ( { ⟨ 𝐵 , 𝐴 ⟩ } ∪ { ⟨ 𝐷 , 𝐶 ⟩ } )
11 5 9 10 3eqtr4g ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ ( 𝐶𝑉𝐷𝑊 ) ) → { ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ } = { ⟨ 𝐵 , 𝐴 ⟩ , ⟨ 𝐷 , 𝐶 ⟩ } )