Metamath Proof Explorer


Theorem brprop

Description: Binary relation for a pair of ordered pairs. (Contributed by Thierry Arnoux, 24-Sep-2023)

Ref Expression
Hypotheses brprop.a φAV
brprop.b φBW
brprop.c φCV
brprop.d φDW
Assertion brprop φXABCDYX=AY=BX=CY=D

Proof

Step Hyp Ref Expression
1 brprop.a φAV
2 brprop.b φBW
3 brprop.c φCV
4 brprop.d φDW
5 df-pr ABCD=ABCD
6 5 breqi XABCDYXABCDY
7 brun XABCDYXABYXCDY
8 6 7 bitri XABCDYXABYXCDY
9 brsnop AVBWXABYX=AY=B
10 1 2 9 syl2anc φXABYX=AY=B
11 brsnop CVDWXCDYX=CY=D
12 3 4 11 syl2anc φXCDYX=CY=D
13 10 12 orbi12d φXABYXCDYX=AY=BX=CY=D
14 8 13 bitrid φXABCDYX=AY=BX=CY=D