| Step | Hyp | Ref | Expression | 
						
							| 1 |  | brprop.a |  |-  ( ph -> A e. V ) | 
						
							| 2 |  | brprop.b |  |-  ( ph -> B e. W ) | 
						
							| 3 |  | brprop.c |  |-  ( ph -> C e. V ) | 
						
							| 4 |  | brprop.d |  |-  ( ph -> D e. W ) | 
						
							| 5 |  | df-pr |  |-  { <. A , B >. , <. C , D >. } = ( { <. A , B >. } u. { <. C , D >. } ) | 
						
							| 6 | 5 | breqi |  |-  ( X { <. A , B >. , <. C , D >. } Y <-> X ( { <. A , B >. } u. { <. C , D >. } ) Y ) | 
						
							| 7 |  | brun |  |-  ( X ( { <. A , B >. } u. { <. C , D >. } ) Y <-> ( X { <. A , B >. } Y \/ X { <. C , D >. } Y ) ) | 
						
							| 8 | 6 7 | bitri |  |-  ( X { <. A , B >. , <. C , D >. } Y <-> ( X { <. A , B >. } Y \/ X { <. C , D >. } Y ) ) | 
						
							| 9 |  | brsnop |  |-  ( ( A e. V /\ B e. W ) -> ( X { <. A , B >. } Y <-> ( X = A /\ Y = B ) ) ) | 
						
							| 10 | 1 2 9 | syl2anc |  |-  ( ph -> ( X { <. A , B >. } Y <-> ( X = A /\ Y = B ) ) ) | 
						
							| 11 |  | brsnop |  |-  ( ( C e. V /\ D e. W ) -> ( X { <. C , D >. } Y <-> ( X = C /\ Y = D ) ) ) | 
						
							| 12 | 3 4 11 | syl2anc |  |-  ( ph -> ( X { <. C , D >. } Y <-> ( X = C /\ Y = D ) ) ) | 
						
							| 13 | 10 12 | orbi12d |  |-  ( ph -> ( ( X { <. A , B >. } Y \/ X { <. C , D >. } Y ) <-> ( ( X = A /\ Y = B ) \/ ( X = C /\ Y = D ) ) ) ) | 
						
							| 14 | 8 13 | bitrid |  |-  ( ph -> ( X { <. A , B >. , <. C , D >. } Y <-> ( ( X = A /\ Y = B ) \/ ( X = C /\ Y = D ) ) ) ) |