| Step |
Hyp |
Ref |
Expression |
| 1 |
|
s3f1.i |
|
| 2 |
|
s3f1.j |
|
| 3 |
|
s3f1.k |
|
| 4 |
|
s3f1.1 |
|
| 5 |
|
s3f1.2 |
|
| 6 |
|
s3f1.3 |
|
| 7 |
1 2 3
|
s3cld |
|
| 8 |
|
wrdf |
|
| 9 |
7 8
|
syl |
|
| 10 |
9
|
ffdmd |
|
| 11 |
|
simplr |
|
| 12 |
|
simpr |
|
| 13 |
11 12
|
eqtr4d |
|
| 14 |
|
simpllr |
|
| 15 |
|
simpr |
|
| 16 |
15
|
fveq2d |
|
| 17 |
|
s3fv0 |
|
| 18 |
1 17
|
syl |
|
| 19 |
18
|
ad4antr |
|
| 20 |
16 19
|
eqtrd |
|
| 21 |
20
|
adantr |
|
| 22 |
|
simpr |
|
| 23 |
22
|
fveq2d |
|
| 24 |
|
s3fv1 |
|
| 25 |
2 24
|
syl |
|
| 26 |
25
|
ad4antr |
|
| 27 |
23 26
|
eqtrd |
|
| 28 |
27
|
adantlr |
|
| 29 |
14 21 28
|
3eqtr3d |
|
| 30 |
4
|
ad5antr |
|
| 31 |
29 30
|
pm2.21ddne |
|
| 32 |
|
simpllr |
|
| 33 |
20
|
adantr |
|
| 34 |
|
simpr |
|
| 35 |
34
|
fveq2d |
|
| 36 |
|
s3fv2 |
|
| 37 |
3 36
|
syl |
|
| 38 |
37
|
ad4antr |
|
| 39 |
35 38
|
eqtrd |
|
| 40 |
39
|
adantlr |
|
| 41 |
32 33 40
|
3eqtr3rd |
|
| 42 |
6
|
ad5antr |
|
| 43 |
41 42
|
pm2.21ddne |
|
| 44 |
|
wrddm |
|
| 45 |
7 44
|
syl |
|
| 46 |
|
s3len |
|
| 47 |
46
|
oveq2i |
|
| 48 |
|
fzo0to3tp |
|
| 49 |
47 48
|
eqtri |
|
| 50 |
45 49
|
eqtrdi |
|
| 51 |
50
|
eleq2d |
|
| 52 |
51
|
biimpa |
|
| 53 |
|
vex |
|
| 54 |
53
|
eltp |
|
| 55 |
52 54
|
sylib |
|
| 56 |
55
|
adantlr |
|
| 57 |
56
|
ad2antrr |
|
| 58 |
13 31 43 57
|
mpjao3dan |
|
| 59 |
|
simpllr |
|
| 60 |
|
simpr |
|
| 61 |
60
|
fveq2d |
|
| 62 |
25
|
ad4antr |
|
| 63 |
61 62
|
eqtrd |
|
| 64 |
63
|
adantr |
|
| 65 |
|
simpr |
|
| 66 |
65
|
fveq2d |
|
| 67 |
18
|
ad4antr |
|
| 68 |
66 67
|
eqtrd |
|
| 69 |
68
|
adantlr |
|
| 70 |
59 64 69
|
3eqtr3rd |
|
| 71 |
4
|
ad5antr |
|
| 72 |
70 71
|
pm2.21ddne |
|
| 73 |
|
simplr |
|
| 74 |
|
simpr |
|
| 75 |
73 74
|
eqtr4d |
|
| 76 |
|
simpllr |
|
| 77 |
63
|
adantr |
|
| 78 |
39
|
adantlr |
|
| 79 |
76 77 78
|
3eqtr3d |
|
| 80 |
5
|
ad5antr |
|
| 81 |
79 80
|
pm2.21ddne |
|
| 82 |
56
|
ad2antrr |
|
| 83 |
72 75 81 82
|
mpjao3dan |
|
| 84 |
|
simpllr |
|
| 85 |
|
simpr |
|
| 86 |
85
|
fveq2d |
|
| 87 |
37
|
ad4antr |
|
| 88 |
86 87
|
eqtrd |
|
| 89 |
88
|
adantr |
|
| 90 |
68
|
adantlr |
|
| 91 |
84 89 90
|
3eqtr3d |
|
| 92 |
6
|
ad5antr |
|
| 93 |
91 92
|
pm2.21ddne |
|
| 94 |
|
simpllr |
|
| 95 |
88
|
adantr |
|
| 96 |
27
|
adantlr |
|
| 97 |
94 95 96
|
3eqtr3rd |
|
| 98 |
5
|
ad5antr |
|
| 99 |
97 98
|
pm2.21ddne |
|
| 100 |
|
simplr |
|
| 101 |
|
simpr |
|
| 102 |
100 101
|
eqtr4d |
|
| 103 |
56
|
ad2antrr |
|
| 104 |
93 99 102 103
|
mpjao3dan |
|
| 105 |
50
|
eleq2d |
|
| 106 |
105
|
biimpa |
|
| 107 |
|
vex |
|
| 108 |
107
|
eltp |
|
| 109 |
106 108
|
sylib |
|
| 110 |
109
|
ad2antrr |
|
| 111 |
58 83 104 110
|
mpjao3dan |
|
| 112 |
111
|
ex |
|
| 113 |
112
|
anasss |
|
| 114 |
113
|
ralrimivva |
|
| 115 |
|
dff13 |
|
| 116 |
10 114 115
|
sylanbrc |
|