| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycpm3.c |  |-  C = ( toCyc ` D ) | 
						
							| 2 |  | cycpm3.s |  |-  S = ( SymGrp ` D ) | 
						
							| 3 |  | cycpm3.d |  |-  ( ph -> D e. V ) | 
						
							| 4 |  | cycpm3.i |  |-  ( ph -> I e. D ) | 
						
							| 5 |  | cycpm3.j |  |-  ( ph -> J e. D ) | 
						
							| 6 |  | cycpm3.k |  |-  ( ph -> K e. D ) | 
						
							| 7 |  | cycpm3.1 |  |-  ( ph -> I =/= J ) | 
						
							| 8 |  | cycpm3.2 |  |-  ( ph -> J =/= K ) | 
						
							| 9 |  | cycpm3.3 |  |-  ( ph -> K =/= I ) | 
						
							| 10 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 11 | 1 2 10 | tocycf |  |-  ( D e. V -> C : { w e. Word D | w : dom w -1-1-> D } --> ( Base ` S ) ) | 
						
							| 12 | 3 11 | syl |  |-  ( ph -> C : { w e. Word D | w : dom w -1-1-> D } --> ( Base ` S ) ) | 
						
							| 13 | 12 | ffnd |  |-  ( ph -> C Fn { w e. Word D | w : dom w -1-1-> D } ) | 
						
							| 14 |  | id |  |-  ( w = <" I J K "> -> w = <" I J K "> ) | 
						
							| 15 |  | dmeq |  |-  ( w = <" I J K "> -> dom w = dom <" I J K "> ) | 
						
							| 16 |  | eqidd |  |-  ( w = <" I J K "> -> D = D ) | 
						
							| 17 | 14 15 16 | f1eq123d |  |-  ( w = <" I J K "> -> ( w : dom w -1-1-> D <-> <" I J K "> : dom <" I J K "> -1-1-> D ) ) | 
						
							| 18 | 4 5 6 | s3cld |  |-  ( ph -> <" I J K "> e. Word D ) | 
						
							| 19 | 4 5 6 7 8 9 | s3f1 |  |-  ( ph -> <" I J K "> : dom <" I J K "> -1-1-> D ) | 
						
							| 20 | 17 18 19 | elrabd |  |-  ( ph -> <" I J K "> e. { w e. Word D | w : dom w -1-1-> D } ) | 
						
							| 21 |  | s3clhash |  |-  <" I J K "> e. ( `' # " { 3 } ) | 
						
							| 22 | 21 | a1i |  |-  ( ph -> <" I J K "> e. ( `' # " { 3 } ) ) | 
						
							| 23 | 13 20 22 | fnfvimad |  |-  ( ph -> ( C ` <" I J K "> ) e. ( C " ( `' # " { 3 } ) ) ) |