Metamath Proof Explorer


Theorem cycpm3cl2

Description: Closure of the 3-cycles in the class of 3-cycles. (Contributed by Thierry Arnoux, 19-Sep-2023)

Ref Expression
Hypotheses cycpm3.c
|- C = ( toCyc ` D )
cycpm3.s
|- S = ( SymGrp ` D )
cycpm3.d
|- ( ph -> D e. V )
cycpm3.i
|- ( ph -> I e. D )
cycpm3.j
|- ( ph -> J e. D )
cycpm3.k
|- ( ph -> K e. D )
cycpm3.1
|- ( ph -> I =/= J )
cycpm3.2
|- ( ph -> J =/= K )
cycpm3.3
|- ( ph -> K =/= I )
Assertion cycpm3cl2
|- ( ph -> ( C ` <" I J K "> ) e. ( C " ( `' # " { 3 } ) ) )

Proof

Step Hyp Ref Expression
1 cycpm3.c
 |-  C = ( toCyc ` D )
2 cycpm3.s
 |-  S = ( SymGrp ` D )
3 cycpm3.d
 |-  ( ph -> D e. V )
4 cycpm3.i
 |-  ( ph -> I e. D )
5 cycpm3.j
 |-  ( ph -> J e. D )
6 cycpm3.k
 |-  ( ph -> K e. D )
7 cycpm3.1
 |-  ( ph -> I =/= J )
8 cycpm3.2
 |-  ( ph -> J =/= K )
9 cycpm3.3
 |-  ( ph -> K =/= I )
10 eqid
 |-  ( Base ` S ) = ( Base ` S )
11 1 2 10 tocycf
 |-  ( D e. V -> C : { w e. Word D | w : dom w -1-1-> D } --> ( Base ` S ) )
12 3 11 syl
 |-  ( ph -> C : { w e. Word D | w : dom w -1-1-> D } --> ( Base ` S ) )
13 12 ffnd
 |-  ( ph -> C Fn { w e. Word D | w : dom w -1-1-> D } )
14 id
 |-  ( w = <" I J K "> -> w = <" I J K "> )
15 dmeq
 |-  ( w = <" I J K "> -> dom w = dom <" I J K "> )
16 eqidd
 |-  ( w = <" I J K "> -> D = D )
17 14 15 16 f1eq123d
 |-  ( w = <" I J K "> -> ( w : dom w -1-1-> D <-> <" I J K "> : dom <" I J K "> -1-1-> D ) )
18 4 5 6 s3cld
 |-  ( ph -> <" I J K "> e. Word D )
19 4 5 6 7 8 9 s3f1
 |-  ( ph -> <" I J K "> : dom <" I J K "> -1-1-> D )
20 17 18 19 elrabd
 |-  ( ph -> <" I J K "> e. { w e. Word D | w : dom w -1-1-> D } )
21 s3clhash
 |-  <" I J K "> e. ( `' # " { 3 } )
22 21 a1i
 |-  ( ph -> <" I J K "> e. ( `' # " { 3 } ) )
23 13 20 22 fnfvimad
 |-  ( ph -> ( C ` <" I J K "> ) e. ( C " ( `' # " { 3 } ) ) )