| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cycpm3.c |
|- C = ( toCyc ` D ) |
| 2 |
|
cycpm3.s |
|- S = ( SymGrp ` D ) |
| 3 |
|
cycpm3.d |
|- ( ph -> D e. V ) |
| 4 |
|
cycpm3.i |
|- ( ph -> I e. D ) |
| 5 |
|
cycpm3.j |
|- ( ph -> J e. D ) |
| 6 |
|
cycpm3.k |
|- ( ph -> K e. D ) |
| 7 |
|
cycpm3.1 |
|- ( ph -> I =/= J ) |
| 8 |
|
cycpm3.2 |
|- ( ph -> J =/= K ) |
| 9 |
|
cycpm3.3 |
|- ( ph -> K =/= I ) |
| 10 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 11 |
1 2 10
|
tocycf |
|- ( D e. V -> C : { w e. Word D | w : dom w -1-1-> D } --> ( Base ` S ) ) |
| 12 |
3 11
|
syl |
|- ( ph -> C : { w e. Word D | w : dom w -1-1-> D } --> ( Base ` S ) ) |
| 13 |
12
|
ffnd |
|- ( ph -> C Fn { w e. Word D | w : dom w -1-1-> D } ) |
| 14 |
|
id |
|- ( w = <" I J K "> -> w = <" I J K "> ) |
| 15 |
|
dmeq |
|- ( w = <" I J K "> -> dom w = dom <" I J K "> ) |
| 16 |
|
eqidd |
|- ( w = <" I J K "> -> D = D ) |
| 17 |
14 15 16
|
f1eq123d |
|- ( w = <" I J K "> -> ( w : dom w -1-1-> D <-> <" I J K "> : dom <" I J K "> -1-1-> D ) ) |
| 18 |
4 5 6
|
s3cld |
|- ( ph -> <" I J K "> e. Word D ) |
| 19 |
4 5 6 7 8 9
|
s3f1 |
|- ( ph -> <" I J K "> : dom <" I J K "> -1-1-> D ) |
| 20 |
17 18 19
|
elrabd |
|- ( ph -> <" I J K "> e. { w e. Word D | w : dom w -1-1-> D } ) |
| 21 |
|
s3clhash |
|- <" I J K "> e. ( `' # " { 3 } ) |
| 22 |
21
|
a1i |
|- ( ph -> <" I J K "> e. ( `' # " { 3 } ) ) |
| 23 |
13 20 22
|
fnfvimad |
|- ( ph -> ( C ` <" I J K "> ) e. ( C " ( `' # " { 3 } ) ) ) |