| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cycpm3.c |  |-  C = ( toCyc ` D ) | 
						
							| 2 |  | cycpm3.s |  |-  S = ( SymGrp ` D ) | 
						
							| 3 |  | cycpm3.d |  |-  ( ph -> D e. V ) | 
						
							| 4 |  | cycpm3.i |  |-  ( ph -> I e. D ) | 
						
							| 5 |  | cycpm3.j |  |-  ( ph -> J e. D ) | 
						
							| 6 |  | cycpm3.k |  |-  ( ph -> K e. D ) | 
						
							| 7 |  | cycpm3.1 |  |-  ( ph -> I =/= J ) | 
						
							| 8 |  | cycpm3.2 |  |-  ( ph -> J =/= K ) | 
						
							| 9 |  | cycpm3.3 |  |-  ( ph -> K =/= I ) | 
						
							| 10 | 4 5 6 | s3cld |  |-  ( ph -> <" I J K "> e. Word D ) | 
						
							| 11 | 4 5 6 7 8 9 | s3f1 |  |-  ( ph -> <" I J K "> : dom <" I J K "> -1-1-> D ) | 
						
							| 12 |  | c0ex |  |-  0 e. _V | 
						
							| 13 | 12 | prid1 |  |-  0 e. { 0 , 1 } | 
						
							| 14 |  | s3len |  |-  ( # ` <" I J K "> ) = 3 | 
						
							| 15 | 14 | oveq1i |  |-  ( ( # ` <" I J K "> ) - 1 ) = ( 3 - 1 ) | 
						
							| 16 |  | 3m1e2 |  |-  ( 3 - 1 ) = 2 | 
						
							| 17 | 15 16 | eqtri |  |-  ( ( # ` <" I J K "> ) - 1 ) = 2 | 
						
							| 18 | 17 | oveq2i |  |-  ( 0 ..^ ( ( # ` <" I J K "> ) - 1 ) ) = ( 0 ..^ 2 ) | 
						
							| 19 |  | fzo0to2pr |  |-  ( 0 ..^ 2 ) = { 0 , 1 } | 
						
							| 20 | 18 19 | eqtri |  |-  ( 0 ..^ ( ( # ` <" I J K "> ) - 1 ) ) = { 0 , 1 } | 
						
							| 21 | 13 20 | eleqtrri |  |-  0 e. ( 0 ..^ ( ( # ` <" I J K "> ) - 1 ) ) | 
						
							| 22 | 21 | a1i |  |-  ( ph -> 0 e. ( 0 ..^ ( ( # ` <" I J K "> ) - 1 ) ) ) | 
						
							| 23 | 1 3 10 11 22 | cycpmfv1 |  |-  ( ph -> ( ( C ` <" I J K "> ) ` ( <" I J K "> ` 0 ) ) = ( <" I J K "> ` ( 0 + 1 ) ) ) | 
						
							| 24 |  | s3fv0 |  |-  ( I e. D -> ( <" I J K "> ` 0 ) = I ) | 
						
							| 25 | 4 24 | syl |  |-  ( ph -> ( <" I J K "> ` 0 ) = I ) | 
						
							| 26 | 25 | fveq2d |  |-  ( ph -> ( ( C ` <" I J K "> ) ` ( <" I J K "> ` 0 ) ) = ( ( C ` <" I J K "> ) ` I ) ) | 
						
							| 27 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 28 | 27 | fveq2i |  |-  ( <" I J K "> ` ( 0 + 1 ) ) = ( <" I J K "> ` 1 ) | 
						
							| 29 |  | s3fv1 |  |-  ( J e. D -> ( <" I J K "> ` 1 ) = J ) | 
						
							| 30 | 5 29 | syl |  |-  ( ph -> ( <" I J K "> ` 1 ) = J ) | 
						
							| 31 | 28 30 | eqtrid |  |-  ( ph -> ( <" I J K "> ` ( 0 + 1 ) ) = J ) | 
						
							| 32 | 23 26 31 | 3eqtr3d |  |-  ( ph -> ( ( C ` <" I J K "> ) ` I ) = J ) |