| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cycpm3.c |
|- C = ( toCyc ` D ) |
| 2 |
|
cycpm3.s |
|- S = ( SymGrp ` D ) |
| 3 |
|
cycpm3.d |
|- ( ph -> D e. V ) |
| 4 |
|
cycpm3.i |
|- ( ph -> I e. D ) |
| 5 |
|
cycpm3.j |
|- ( ph -> J e. D ) |
| 6 |
|
cycpm3.k |
|- ( ph -> K e. D ) |
| 7 |
|
cycpm3.1 |
|- ( ph -> I =/= J ) |
| 8 |
|
cycpm3.2 |
|- ( ph -> J =/= K ) |
| 9 |
|
cycpm3.3 |
|- ( ph -> K =/= I ) |
| 10 |
4 5 6
|
s3cld |
|- ( ph -> <" I J K "> e. Word D ) |
| 11 |
4 5 6 7 8 9
|
s3f1 |
|- ( ph -> <" I J K "> : dom <" I J K "> -1-1-> D ) |
| 12 |
|
c0ex |
|- 0 e. _V |
| 13 |
12
|
prid1 |
|- 0 e. { 0 , 1 } |
| 14 |
|
s3len |
|- ( # ` <" I J K "> ) = 3 |
| 15 |
14
|
oveq1i |
|- ( ( # ` <" I J K "> ) - 1 ) = ( 3 - 1 ) |
| 16 |
|
3m1e2 |
|- ( 3 - 1 ) = 2 |
| 17 |
15 16
|
eqtri |
|- ( ( # ` <" I J K "> ) - 1 ) = 2 |
| 18 |
17
|
oveq2i |
|- ( 0 ..^ ( ( # ` <" I J K "> ) - 1 ) ) = ( 0 ..^ 2 ) |
| 19 |
|
fzo0to2pr |
|- ( 0 ..^ 2 ) = { 0 , 1 } |
| 20 |
18 19
|
eqtri |
|- ( 0 ..^ ( ( # ` <" I J K "> ) - 1 ) ) = { 0 , 1 } |
| 21 |
13 20
|
eleqtrri |
|- 0 e. ( 0 ..^ ( ( # ` <" I J K "> ) - 1 ) ) |
| 22 |
21
|
a1i |
|- ( ph -> 0 e. ( 0 ..^ ( ( # ` <" I J K "> ) - 1 ) ) ) |
| 23 |
1 3 10 11 22
|
cycpmfv1 |
|- ( ph -> ( ( C ` <" I J K "> ) ` ( <" I J K "> ` 0 ) ) = ( <" I J K "> ` ( 0 + 1 ) ) ) |
| 24 |
|
s3fv0 |
|- ( I e. D -> ( <" I J K "> ` 0 ) = I ) |
| 25 |
4 24
|
syl |
|- ( ph -> ( <" I J K "> ` 0 ) = I ) |
| 26 |
25
|
fveq2d |
|- ( ph -> ( ( C ` <" I J K "> ) ` ( <" I J K "> ` 0 ) ) = ( ( C ` <" I J K "> ) ` I ) ) |
| 27 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 28 |
27
|
fveq2i |
|- ( <" I J K "> ` ( 0 + 1 ) ) = ( <" I J K "> ` 1 ) |
| 29 |
|
s3fv1 |
|- ( J e. D -> ( <" I J K "> ` 1 ) = J ) |
| 30 |
5 29
|
syl |
|- ( ph -> ( <" I J K "> ` 1 ) = J ) |
| 31 |
28 30
|
eqtrid |
|- ( ph -> ( <" I J K "> ` ( 0 + 1 ) ) = J ) |
| 32 |
23 26 31
|
3eqtr3d |
|- ( ph -> ( ( C ` <" I J K "> ) ` I ) = J ) |