| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cycpm3.c |
⊢ 𝐶 = ( toCyc ‘ 𝐷 ) |
| 2 |
|
cycpm3.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) |
| 3 |
|
cycpm3.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
| 4 |
|
cycpm3.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝐷 ) |
| 5 |
|
cycpm3.j |
⊢ ( 𝜑 → 𝐽 ∈ 𝐷 ) |
| 6 |
|
cycpm3.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝐷 ) |
| 7 |
|
cycpm3.1 |
⊢ ( 𝜑 → 𝐼 ≠ 𝐽 ) |
| 8 |
|
cycpm3.2 |
⊢ ( 𝜑 → 𝐽 ≠ 𝐾 ) |
| 9 |
|
cycpm3.3 |
⊢ ( 𝜑 → 𝐾 ≠ 𝐼 ) |
| 10 |
4 5 6
|
s3cld |
⊢ ( 𝜑 → 〈“ 𝐼 𝐽 𝐾 ”〉 ∈ Word 𝐷 ) |
| 11 |
4 5 6 7 8 9
|
s3f1 |
⊢ ( 𝜑 → 〈“ 𝐼 𝐽 𝐾 ”〉 : dom 〈“ 𝐼 𝐽 𝐾 ”〉 –1-1→ 𝐷 ) |
| 12 |
|
c0ex |
⊢ 0 ∈ V |
| 13 |
12
|
prid1 |
⊢ 0 ∈ { 0 , 1 } |
| 14 |
|
s3len |
⊢ ( ♯ ‘ 〈“ 𝐼 𝐽 𝐾 ”〉 ) = 3 |
| 15 |
14
|
oveq1i |
⊢ ( ( ♯ ‘ 〈“ 𝐼 𝐽 𝐾 ”〉 ) − 1 ) = ( 3 − 1 ) |
| 16 |
|
3m1e2 |
⊢ ( 3 − 1 ) = 2 |
| 17 |
15 16
|
eqtri |
⊢ ( ( ♯ ‘ 〈“ 𝐼 𝐽 𝐾 ”〉 ) − 1 ) = 2 |
| 18 |
17
|
oveq2i |
⊢ ( 0 ..^ ( ( ♯ ‘ 〈“ 𝐼 𝐽 𝐾 ”〉 ) − 1 ) ) = ( 0 ..^ 2 ) |
| 19 |
|
fzo0to2pr |
⊢ ( 0 ..^ 2 ) = { 0 , 1 } |
| 20 |
18 19
|
eqtri |
⊢ ( 0 ..^ ( ( ♯ ‘ 〈“ 𝐼 𝐽 𝐾 ”〉 ) − 1 ) ) = { 0 , 1 } |
| 21 |
13 20
|
eleqtrri |
⊢ 0 ∈ ( 0 ..^ ( ( ♯ ‘ 〈“ 𝐼 𝐽 𝐾 ”〉 ) − 1 ) ) |
| 22 |
21
|
a1i |
⊢ ( 𝜑 → 0 ∈ ( 0 ..^ ( ( ♯ ‘ 〈“ 𝐼 𝐽 𝐾 ”〉 ) − 1 ) ) ) |
| 23 |
1 3 10 11 22
|
cycpmfv1 |
⊢ ( 𝜑 → ( ( 𝐶 ‘ 〈“ 𝐼 𝐽 𝐾 ”〉 ) ‘ ( 〈“ 𝐼 𝐽 𝐾 ”〉 ‘ 0 ) ) = ( 〈“ 𝐼 𝐽 𝐾 ”〉 ‘ ( 0 + 1 ) ) ) |
| 24 |
|
s3fv0 |
⊢ ( 𝐼 ∈ 𝐷 → ( 〈“ 𝐼 𝐽 𝐾 ”〉 ‘ 0 ) = 𝐼 ) |
| 25 |
4 24
|
syl |
⊢ ( 𝜑 → ( 〈“ 𝐼 𝐽 𝐾 ”〉 ‘ 0 ) = 𝐼 ) |
| 26 |
25
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝐶 ‘ 〈“ 𝐼 𝐽 𝐾 ”〉 ) ‘ ( 〈“ 𝐼 𝐽 𝐾 ”〉 ‘ 0 ) ) = ( ( 𝐶 ‘ 〈“ 𝐼 𝐽 𝐾 ”〉 ) ‘ 𝐼 ) ) |
| 27 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 28 |
27
|
fveq2i |
⊢ ( 〈“ 𝐼 𝐽 𝐾 ”〉 ‘ ( 0 + 1 ) ) = ( 〈“ 𝐼 𝐽 𝐾 ”〉 ‘ 1 ) |
| 29 |
|
s3fv1 |
⊢ ( 𝐽 ∈ 𝐷 → ( 〈“ 𝐼 𝐽 𝐾 ”〉 ‘ 1 ) = 𝐽 ) |
| 30 |
5 29
|
syl |
⊢ ( 𝜑 → ( 〈“ 𝐼 𝐽 𝐾 ”〉 ‘ 1 ) = 𝐽 ) |
| 31 |
28 30
|
eqtrid |
⊢ ( 𝜑 → ( 〈“ 𝐼 𝐽 𝐾 ”〉 ‘ ( 0 + 1 ) ) = 𝐽 ) |
| 32 |
23 26 31
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝐶 ‘ 〈“ 𝐼 𝐽 𝐾 ”〉 ) ‘ 𝐼 ) = 𝐽 ) |