Description: The cyclic subgroup generated by A includes its generator. Although this theorem holds for any class G , the definition of F is only meaningful if G is a group. (Contributed by Rohan Ridenour, 3-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cycsubggend.1 | |- B = ( Base ` G ) |
|
| cycsubggend.2 | |- .x. = ( .g ` G ) |
||
| cycsubggend.3 | |- F = ( n e. ZZ |-> ( n .x. A ) ) |
||
| cycsubggend.4 | |- ( ph -> A e. B ) |
||
| Assertion | cycsubggend | |- ( ph -> A e. ran F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycsubggend.1 | |- B = ( Base ` G ) |
|
| 2 | cycsubggend.2 | |- .x. = ( .g ` G ) |
|
| 3 | cycsubggend.3 | |- F = ( n e. ZZ |-> ( n .x. A ) ) |
|
| 4 | cycsubggend.4 | |- ( ph -> A e. B ) |
|
| 5 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 6 | simpr | |- ( ( ph /\ n = 1 ) -> n = 1 ) |
|
| 7 | 6 | oveq1d | |- ( ( ph /\ n = 1 ) -> ( n .x. A ) = ( 1 .x. A ) ) |
| 8 | 4 | adantr | |- ( ( ph /\ n = 1 ) -> A e. B ) |
| 9 | 1 2 | mulg1 | |- ( A e. B -> ( 1 .x. A ) = A ) |
| 10 | 8 9 | syl | |- ( ( ph /\ n = 1 ) -> ( 1 .x. A ) = A ) |
| 11 | 7 10 | eqtr2d | |- ( ( ph /\ n = 1 ) -> A = ( n .x. A ) ) |
| 12 | 3 5 4 11 | elrnmptdv | |- ( ph -> A e. ran F ) |