Metamath Proof Explorer


Theorem cycsubggend

Description: The cyclic subgroup generated by A includes its generator. Although this theorem holds for any class G , the definition of F is only meaningful if G is a group. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses cycsubggend.1 𝐵 = ( Base ‘ 𝐺 )
cycsubggend.2 · = ( .g𝐺 )
cycsubggend.3 𝐹 = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) )
cycsubggend.4 ( 𝜑𝐴𝐵 )
Assertion cycsubggend ( 𝜑𝐴 ∈ ran 𝐹 )

Proof

Step Hyp Ref Expression
1 cycsubggend.1 𝐵 = ( Base ‘ 𝐺 )
2 cycsubggend.2 · = ( .g𝐺 )
3 cycsubggend.3 𝐹 = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝐴 ) )
4 cycsubggend.4 ( 𝜑𝐴𝐵 )
5 1zzd ( 𝜑 → 1 ∈ ℤ )
6 simpr ( ( 𝜑𝑛 = 1 ) → 𝑛 = 1 )
7 6 oveq1d ( ( 𝜑𝑛 = 1 ) → ( 𝑛 · 𝐴 ) = ( 1 · 𝐴 ) )
8 4 adantr ( ( 𝜑𝑛 = 1 ) → 𝐴𝐵 )
9 1 2 mulg1 ( 𝐴𝐵 → ( 1 · 𝐴 ) = 𝐴 )
10 8 9 syl ( ( 𝜑𝑛 = 1 ) → ( 1 · 𝐴 ) = 𝐴 )
11 7 10 eqtr2d ( ( 𝜑𝑛 = 1 ) → 𝐴 = ( 𝑛 · 𝐴 ) )
12 3 5 4 11 elrnmptdv ( 𝜑𝐴 ∈ ran 𝐹 )