Description: The exponent of a finite cyclic group is the order of the group. (Contributed by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cygctb.1 | |- B = ( Base ` G ) | |
| cyggex.o | |- E = ( gEx ` G ) | ||
| Assertion | cyggex | |- ( ( G e. CycGrp /\ B e. Fin ) -> E = ( # ` B ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cygctb.1 | |- B = ( Base ` G ) | |
| 2 | cyggex.o | |- E = ( gEx ` G ) | |
| 3 | 1 2 | cyggex2 | |- ( G e. CycGrp -> E = if ( B e. Fin , ( # ` B ) , 0 ) ) | 
| 4 | iftrue | |- ( B e. Fin -> if ( B e. Fin , ( # ` B ) , 0 ) = ( # ` B ) ) | |
| 5 | 3 4 | sylan9eq | |- ( ( G e. CycGrp /\ B e. Fin ) -> E = ( # ` B ) ) |