Description: The exponent of a finite cyclic group is the order of the group. (Contributed by Mario Carneiro, 24-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cygctb.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| cyggex.o | ⊢ 𝐸 = ( gEx ‘ 𝐺 ) | ||
| Assertion | cyggex | ⊢ ( ( 𝐺 ∈ CycGrp ∧ 𝐵 ∈ Fin ) → 𝐸 = ( ♯ ‘ 𝐵 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cygctb.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | cyggex.o | ⊢ 𝐸 = ( gEx ‘ 𝐺 ) | |
| 3 | 1 2 | cyggex2 | ⊢ ( 𝐺 ∈ CycGrp → 𝐸 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) | 
| 4 | iftrue | ⊢ ( 𝐵 ∈ Fin → if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) = ( ♯ ‘ 𝐵 ) ) | |
| 5 | 3 4 | sylan9eq | ⊢ ( ( 𝐺 ∈ CycGrp ∧ 𝐵 ∈ Fin ) → 𝐸 = ( ♯ ‘ 𝐵 ) ) |