| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cygctb.1 | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | cyggex.o | ⊢ 𝐸  =  ( gEx ‘ 𝐺 ) | 
						
							| 3 |  | eqid | ⊢ ( .g ‘ 𝐺 )  =  ( .g ‘ 𝐺 ) | 
						
							| 4 |  | eqid | ⊢ { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 }  =  { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 } | 
						
							| 5 | 1 3 4 | iscyg2 | ⊢ ( 𝐺  ∈  CycGrp  ↔  ( 𝐺  ∈  Grp  ∧  { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 }  ≠  ∅ ) ) | 
						
							| 6 |  | n0 | ⊢ ( { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 }  ≠  ∅  ↔  ∃ 𝑦 𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 } ) | 
						
							| 7 |  | ssrab2 | ⊢ { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 }  ⊆  𝐵 | 
						
							| 8 |  | simpr | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 } )  →  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 } ) | 
						
							| 9 | 7 8 | sselid | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 } )  →  𝑦  ∈  𝐵 ) | 
						
							| 10 |  | eqid | ⊢ ( od ‘ 𝐺 )  =  ( od ‘ 𝐺 ) | 
						
							| 11 | 1 3 4 10 | cyggenod2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 } )  →  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 ) ) | 
						
							| 12 | 9 11 | jca | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 } )  →  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 ) ) ) | 
						
							| 13 | 12 | ex | ⊢ ( 𝐺  ∈  Grp  →  ( 𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 }  →  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 ) ) ) ) | 
						
							| 14 | 1 2 | gexcl | ⊢ ( 𝐺  ∈  Grp  →  𝐸  ∈  ℕ0 ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 ) ) )  →  𝐸  ∈  ℕ0 ) | 
						
							| 16 |  | hashcl | ⊢ ( 𝐵  ∈  Fin  →  ( ♯ ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 ) ) )  ∧  𝐵  ∈  Fin )  →  ( ♯ ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 18 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 19 | 18 | a1i | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 ) ) )  ∧  ¬  𝐵  ∈  Fin )  →  0  ∈  ℕ0 ) | 
						
							| 20 | 17 19 | ifclda | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 ) ) )  →  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 )  ∈  ℕ0 ) | 
						
							| 21 |  | breq2 | ⊢ ( ( ♯ ‘ 𝐵 )  =  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 )  →  ( 𝐸  ∥  ( ♯ ‘ 𝐵 )  ↔  𝐸  ∥  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 ) ) ) | 
						
							| 22 |  | breq2 | ⊢ ( 0  =  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 )  →  ( 𝐸  ∥  0  ↔  𝐸  ∥  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 ) ) ) | 
						
							| 23 | 1 2 | gexdvds3 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐵  ∈  Fin )  →  𝐸  ∥  ( ♯ ‘ 𝐵 ) ) | 
						
							| 24 | 23 | adantlr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 ) ) )  ∧  𝐵  ∈  Fin )  →  𝐸  ∥  ( ♯ ‘ 𝐵 ) ) | 
						
							| 25 | 15 | adantr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 ) ) )  ∧  ¬  𝐵  ∈  Fin )  →  𝐸  ∈  ℕ0 ) | 
						
							| 26 |  | nn0z | ⊢ ( 𝐸  ∈  ℕ0  →  𝐸  ∈  ℤ ) | 
						
							| 27 |  | dvds0 | ⊢ ( 𝐸  ∈  ℤ  →  𝐸  ∥  0 ) | 
						
							| 28 | 25 26 27 | 3syl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 ) ) )  ∧  ¬  𝐵  ∈  Fin )  →  𝐸  ∥  0 ) | 
						
							| 29 | 21 22 24 28 | ifbothda | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 ) ) )  →  𝐸  ∥  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 ) ) | 
						
							| 30 |  | simprr | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 ) ) )  →  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 ) ) | 
						
							| 31 | 1 2 10 | gexod | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑦  ∈  𝐵 )  →  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∥  𝐸 ) | 
						
							| 32 | 31 | adantrr | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 ) ) )  →  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  ∥  𝐸 ) | 
						
							| 33 | 30 32 | eqbrtrrd | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 ) ) )  →  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 )  ∥  𝐸 ) | 
						
							| 34 |  | dvdseq | ⊢ ( ( ( 𝐸  ∈  ℕ0  ∧  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 )  ∈  ℕ0 )  ∧  ( 𝐸  ∥  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 )  ∧  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 )  ∥  𝐸 ) )  →  𝐸  =  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 ) ) | 
						
							| 35 | 15 20 29 33 34 | syl22anc | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 ) ) )  →  𝐸  =  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 ) ) | 
						
							| 36 | 35 | ex | ⊢ ( 𝐺  ∈  Grp  →  ( ( 𝑦  ∈  𝐵  ∧  ( ( od ‘ 𝐺 ) ‘ 𝑦 )  =  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 ) )  →  𝐸  =  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 ) ) ) | 
						
							| 37 | 13 36 | syld | ⊢ ( 𝐺  ∈  Grp  →  ( 𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 }  →  𝐸  =  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 ) ) ) | 
						
							| 38 | 37 | exlimdv | ⊢ ( 𝐺  ∈  Grp  →  ( ∃ 𝑦 𝑦  ∈  { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 }  →  𝐸  =  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 ) ) ) | 
						
							| 39 | 6 38 | biimtrid | ⊢ ( 𝐺  ∈  Grp  →  ( { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 }  ≠  ∅  →  𝐸  =  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 ) ) ) | 
						
							| 40 | 39 | imp | ⊢ ( ( 𝐺  ∈  Grp  ∧  { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 }  ≠  ∅ )  →  𝐸  =  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 ) ) | 
						
							| 41 | 5 40 | sylbi | ⊢ ( 𝐺  ∈  CycGrp  →  𝐸  =  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 ) ) |