Metamath Proof Explorer


Theorem gexod

Description: Any group element is annihilated by any multiple of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypotheses gexod.1 𝑋 = ( Base ‘ 𝐺 )
gexod.2 𝐸 = ( gEx ‘ 𝐺 )
gexod.3 𝑂 = ( od ‘ 𝐺 )
Assertion gexod ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ) → ( 𝑂𝐴 ) ∥ 𝐸 )

Proof

Step Hyp Ref Expression
1 gexod.1 𝑋 = ( Base ‘ 𝐺 )
2 gexod.2 𝐸 = ( gEx ‘ 𝐺 )
3 gexod.3 𝑂 = ( od ‘ 𝐺 )
4 eqid ( .g𝐺 ) = ( .g𝐺 )
5 eqid ( 0g𝐺 ) = ( 0g𝐺 )
6 1 2 4 5 gexid ( 𝐴𝑋 → ( 𝐸 ( .g𝐺 ) 𝐴 ) = ( 0g𝐺 ) )
7 6 adantl ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ) → ( 𝐸 ( .g𝐺 ) 𝐴 ) = ( 0g𝐺 ) )
8 1 2 gexcl ( 𝐺 ∈ Grp → 𝐸 ∈ ℕ0 )
9 8 adantr ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ) → 𝐸 ∈ ℕ0 )
10 9 nn0zd ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ) → 𝐸 ∈ ℤ )
11 1 3 4 5 oddvds ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋𝐸 ∈ ℤ ) → ( ( 𝑂𝐴 ) ∥ 𝐸 ↔ ( 𝐸 ( .g𝐺 ) 𝐴 ) = ( 0g𝐺 ) ) )
12 10 11 mpd3an3 ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ) → ( ( 𝑂𝐴 ) ∥ 𝐸 ↔ ( 𝐸 ( .g𝐺 ) 𝐴 ) = ( 0g𝐺 ) ) )
13 7 12 mpbird ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ) → ( 𝑂𝐴 ) ∥ 𝐸 )