Metamath Proof Explorer


Theorem gexod

Description: Any group element is annihilated by any multiple of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypotheses gexod.1
|- X = ( Base ` G )
gexod.2
|- E = ( gEx ` G )
gexod.3
|- O = ( od ` G )
Assertion gexod
|- ( ( G e. Grp /\ A e. X ) -> ( O ` A ) || E )

Proof

Step Hyp Ref Expression
1 gexod.1
 |-  X = ( Base ` G )
2 gexod.2
 |-  E = ( gEx ` G )
3 gexod.3
 |-  O = ( od ` G )
4 eqid
 |-  ( .g ` G ) = ( .g ` G )
5 eqid
 |-  ( 0g ` G ) = ( 0g ` G )
6 1 2 4 5 gexid
 |-  ( A e. X -> ( E ( .g ` G ) A ) = ( 0g ` G ) )
7 6 adantl
 |-  ( ( G e. Grp /\ A e. X ) -> ( E ( .g ` G ) A ) = ( 0g ` G ) )
8 1 2 gexcl
 |-  ( G e. Grp -> E e. NN0 )
9 8 adantr
 |-  ( ( G e. Grp /\ A e. X ) -> E e. NN0 )
10 9 nn0zd
 |-  ( ( G e. Grp /\ A e. X ) -> E e. ZZ )
11 1 3 4 5 oddvds
 |-  ( ( G e. Grp /\ A e. X /\ E e. ZZ ) -> ( ( O ` A ) || E <-> ( E ( .g ` G ) A ) = ( 0g ` G ) ) )
12 10 11 mpd3an3
 |-  ( ( G e. Grp /\ A e. X ) -> ( ( O ` A ) || E <-> ( E ( .g ` G ) A ) = ( 0g ` G ) ) )
13 7 12 mpbird
 |-  ( ( G e. Grp /\ A e. X ) -> ( O ` A ) || E )