Metamath Proof Explorer


Theorem gexid

Description: Any element to the power of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypotheses gexcl.1
|- X = ( Base ` G )
gexcl.2
|- E = ( gEx ` G )
gexid.3
|- .x. = ( .g ` G )
gexid.4
|- .0. = ( 0g ` G )
Assertion gexid
|- ( A e. X -> ( E .x. A ) = .0. )

Proof

Step Hyp Ref Expression
1 gexcl.1
 |-  X = ( Base ` G )
2 gexcl.2
 |-  E = ( gEx ` G )
3 gexid.3
 |-  .x. = ( .g ` G )
4 gexid.4
 |-  .0. = ( 0g ` G )
5 oveq1
 |-  ( E = 0 -> ( E .x. A ) = ( 0 .x. A ) )
6 1 4 3 mulg0
 |-  ( A e. X -> ( 0 .x. A ) = .0. )
7 5 6 sylan9eqr
 |-  ( ( A e. X /\ E = 0 ) -> ( E .x. A ) = .0. )
8 7 adantrr
 |-  ( ( A e. X /\ ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) ) -> ( E .x. A ) = .0. )
9 oveq1
 |-  ( y = E -> ( y .x. x ) = ( E .x. x ) )
10 9 eqeq1d
 |-  ( y = E -> ( ( y .x. x ) = .0. <-> ( E .x. x ) = .0. ) )
11 10 ralbidv
 |-  ( y = E -> ( A. x e. X ( y .x. x ) = .0. <-> A. x e. X ( E .x. x ) = .0. ) )
12 11 elrab
 |-  ( E e. { y e. NN | A. x e. X ( y .x. x ) = .0. } <-> ( E e. NN /\ A. x e. X ( E .x. x ) = .0. ) )
13 12 simprbi
 |-  ( E e. { y e. NN | A. x e. X ( y .x. x ) = .0. } -> A. x e. X ( E .x. x ) = .0. )
14 oveq2
 |-  ( x = A -> ( E .x. x ) = ( E .x. A ) )
15 14 eqeq1d
 |-  ( x = A -> ( ( E .x. x ) = .0. <-> ( E .x. A ) = .0. ) )
16 15 rspcva
 |-  ( ( A e. X /\ A. x e. X ( E .x. x ) = .0. ) -> ( E .x. A ) = .0. )
17 13 16 sylan2
 |-  ( ( A e. X /\ E e. { y e. NN | A. x e. X ( y .x. x ) = .0. } ) -> ( E .x. A ) = .0. )
18 elfvex
 |-  ( A e. ( Base ` G ) -> G e. _V )
19 18 1 eleq2s
 |-  ( A e. X -> G e. _V )
20 eqid
 |-  { y e. NN | A. x e. X ( y .x. x ) = .0. } = { y e. NN | A. x e. X ( y .x. x ) = .0. }
21 1 3 4 2 20 gexlem1
 |-  ( G e. _V -> ( ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) \/ E e. { y e. NN | A. x e. X ( y .x. x ) = .0. } ) )
22 19 21 syl
 |-  ( A e. X -> ( ( E = 0 /\ { y e. NN | A. x e. X ( y .x. x ) = .0. } = (/) ) \/ E e. { y e. NN | A. x e. X ( y .x. x ) = .0. } ) )
23 8 17 22 mpjaodan
 |-  ( A e. X -> ( E .x. A ) = .0. )