Step |
Hyp |
Ref |
Expression |
1 |
|
dalema.ph |
|- ( ph <-> ( ( ( K e. HL /\ C e. ( Base ` K ) ) /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( S e. A /\ T e. A /\ U e. A ) ) /\ ( Y e. O /\ Z e. O ) /\ ( ( -. C .<_ ( P .\/ Q ) /\ -. C .<_ ( Q .\/ R ) /\ -. C .<_ ( R .\/ P ) ) /\ ( -. C .<_ ( S .\/ T ) /\ -. C .<_ ( T .\/ U ) /\ -. C .<_ ( U .\/ S ) ) /\ ( C .<_ ( P .\/ S ) /\ C .<_ ( Q .\/ T ) /\ C .<_ ( R .\/ U ) ) ) ) ) |
2 |
|
dalemc.l |
|- .<_ = ( le ` K ) |
3 |
|
dalemc.j |
|- .\/ = ( join ` K ) |
4 |
|
dalemc.a |
|- A = ( Atoms ` K ) |
5 |
|
dalem19.o |
|- O = ( LPlanes ` K ) |
6 |
|
dalem19.y |
|- Y = ( ( P .\/ Q ) .\/ R ) |
7 |
|
dalem19.z |
|- Z = ( ( S .\/ T ) .\/ U ) |
8 |
1
|
dalemkehl |
|- ( ph -> K e. HL ) |
9 |
8
|
ad3antrrr |
|- ( ( ( ( ph /\ Y = Z ) /\ c e. A ) /\ -. c .<_ Y ) -> K e. HL ) |
10 |
1 2 3 4 5 6
|
dalemcea |
|- ( ph -> C e. A ) |
11 |
10
|
ad3antrrr |
|- ( ( ( ( ph /\ Y = Z ) /\ c e. A ) /\ -. c .<_ Y ) -> C e. A ) |
12 |
|
simplr |
|- ( ( ( ( ph /\ Y = Z ) /\ c e. A ) /\ -. c .<_ Y ) -> c e. A ) |
13 |
1 5
|
dalemyeb |
|- ( ph -> Y e. ( Base ` K ) ) |
14 |
13
|
ad3antrrr |
|- ( ( ( ( ph /\ Y = Z ) /\ c e. A ) /\ -. c .<_ Y ) -> Y e. ( Base ` K ) ) |
15 |
1 2 3 4 5 6 7
|
dalem17 |
|- ( ( ph /\ Y = Z ) -> C .<_ Y ) |
16 |
15
|
ad2antrr |
|- ( ( ( ( ph /\ Y = Z ) /\ c e. A ) /\ -. c .<_ Y ) -> C .<_ Y ) |
17 |
|
simpr |
|- ( ( ( ( ph /\ Y = Z ) /\ c e. A ) /\ -. c .<_ Y ) -> -. c .<_ Y ) |
18 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
19 |
18 2 3 4
|
atbtwnex |
|- ( ( ( K e. HL /\ C e. A /\ c e. A ) /\ ( Y e. ( Base ` K ) /\ C .<_ Y /\ -. c .<_ Y ) ) -> E. d e. A ( d =/= c /\ -. d .<_ Y /\ C .<_ ( c .\/ d ) ) ) |
20 |
9 11 12 14 16 17 19
|
syl33anc |
|- ( ( ( ( ph /\ Y = Z ) /\ c e. A ) /\ -. c .<_ Y ) -> E. d e. A ( d =/= c /\ -. d .<_ Y /\ C .<_ ( c .\/ d ) ) ) |