Metamath Proof Explorer


Theorem dalem19

Description: Lemma for dath . Show that a second dummy atom d exists outside of the Y and Z planes (when those planes are equal). (Contributed by NM, 15-Aug-2012)

Ref Expression
Hypotheses dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalemc.l ˙=K
dalemc.j ˙=joinK
dalemc.a A=AtomsK
dalem19.o O=LPlanesK
dalem19.y Y=P˙Q˙R
dalem19.z Z=S˙T˙U
Assertion dalem19 φY=ZcA¬c˙YdAdc¬d˙YC˙c˙d

Proof

Step Hyp Ref Expression
1 dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalemc.l ˙=K
3 dalemc.j ˙=joinK
4 dalemc.a A=AtomsK
5 dalem19.o O=LPlanesK
6 dalem19.y Y=P˙Q˙R
7 dalem19.z Z=S˙T˙U
8 1 dalemkehl φKHL
9 8 ad3antrrr φY=ZcA¬c˙YKHL
10 1 2 3 4 5 6 dalemcea φCA
11 10 ad3antrrr φY=ZcA¬c˙YCA
12 simplr φY=ZcA¬c˙YcA
13 1 5 dalemyeb φYBaseK
14 13 ad3antrrr φY=ZcA¬c˙YYBaseK
15 1 2 3 4 5 6 7 dalem17 φY=ZC˙Y
16 15 ad2antrr φY=ZcA¬c˙YC˙Y
17 simpr φY=ZcA¬c˙Y¬c˙Y
18 eqid BaseK=BaseK
19 18 2 3 4 atbtwnex KHLCAcAYBaseKC˙Y¬c˙YdAdc¬d˙YC˙c˙d
20 9 11 12 14 16 17 19 syl33anc φY=ZcA¬c˙YdAdc¬d˙YC˙c˙d