| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dchrabs2.g |
|- G = ( DChr ` N ) |
| 2 |
|
dchrabs2.d |
|- D = ( Base ` G ) |
| 3 |
|
dchrabs2.z |
|- Z = ( Z/nZ ` N ) |
| 4 |
|
dchrabs2.b |
|- B = ( Base ` Z ) |
| 5 |
|
dchrabs2.x |
|- ( ph -> X e. D ) |
| 6 |
|
dchrabs2.a |
|- ( ph -> A e. B ) |
| 7 |
|
simpr |
|- ( ( ph /\ ( X ` A ) = 0 ) -> ( X ` A ) = 0 ) |
| 8 |
7
|
abs00bd |
|- ( ( ph /\ ( X ` A ) = 0 ) -> ( abs ` ( X ` A ) ) = 0 ) |
| 9 |
|
0le1 |
|- 0 <_ 1 |
| 10 |
8 9
|
eqbrtrdi |
|- ( ( ph /\ ( X ` A ) = 0 ) -> ( abs ` ( X ` A ) ) <_ 1 ) |
| 11 |
5
|
adantr |
|- ( ( ph /\ ( X ` A ) =/= 0 ) -> X e. D ) |
| 12 |
|
eqid |
|- ( Unit ` Z ) = ( Unit ` Z ) |
| 13 |
1 3 2 4 12 5 6
|
dchrn0 |
|- ( ph -> ( ( X ` A ) =/= 0 <-> A e. ( Unit ` Z ) ) ) |
| 14 |
13
|
biimpa |
|- ( ( ph /\ ( X ` A ) =/= 0 ) -> A e. ( Unit ` Z ) ) |
| 15 |
1 2 11 3 12 14
|
dchrabs |
|- ( ( ph /\ ( X ` A ) =/= 0 ) -> ( abs ` ( X ` A ) ) = 1 ) |
| 16 |
|
1le1 |
|- 1 <_ 1 |
| 17 |
15 16
|
eqbrtrdi |
|- ( ( ph /\ ( X ` A ) =/= 0 ) -> ( abs ` ( X ` A ) ) <_ 1 ) |
| 18 |
10 17
|
pm2.61dane |
|- ( ph -> ( abs ` ( X ` A ) ) <_ 1 ) |